
Precomputed Illuminance Composition for Real-Time Global Illumination

Johannes Jendersie1 David Kuri1,2 Thorsten Grosch3
1Otto-von-Guericke University Magdeburg 2Volkswagen AG 3TU Clausthal

Figure 1: The Crytek Sponza1 (5.7ms, 245k triangles, 10k caches) with a visualization of the caches and a Volkswagen test data set using an
environment map from Persson2 (7.5ms, 1.35M triangles, 11k caches) with multiple bounce indirect illumination and slightly glossy surfaces.

Abstract

In this paper we present a new real-time approach for indirect global
illumination under dynamic lighting conditions. We use surfels to
gather a sampling of the local illumination and propagate the light
through the scene using a hierarchy and a set of precomputed light
transport paths. The light is then aggregated into caches for light-
ing of static and dynamic geometry. By using a spherical harmon-
ics representation, caches preserve incident light directions to allow
both diffuse and slightly glossy BRDFs for indirect lighting.

The sparse sampling of direct light also enables indirect lighting
from many light sources and efficient progressive multi-bounce.
Furthermore, any existing pipeline can be used for surfel lighting,
enabling the use of all kinds of light sources. This also includes
area lights which can be computed together with the first bounce
indirect illumination of other light sources at no additional cost.

Keywords: global illumination, real-time, spherical harmonics,
caches, surfels

Concepts: •Computing methodologies→ Reflectance modeling;

1 Introduction

The simulation of light, including the effects of bounced light
known as global illumination, is crucial for the generation of pho-
torealistic imagery. The concepts of light transport for the purpose
of rendering are well understood but expensive to calculate. Es-
pecially for interactive applications the computational cost is pro-
hibitive. Both precomputation and approximation are viable meth-
ods to achieve considerable speedups.

Current illumination algorithms often solve this problem at the ex-
pense of computation time and memory consumption. We pro-
pose a new algorithm which achieves high real-time frame rates
at comparably low memory consumption and supports all kinds of
dynamic light sources. Except for the comparably fast per pixel
evaluation, the approach is resolution independent.

To achieve competitive performance, our algorithm relies on the
precomputation of light transport factors in the form of spherical

c© Owner/Author 2016. This is the author’s version of the work. It is
posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in the Proceedings of the 2016 Symposium
on Interactive 3D Graphics and Games.
DOI: http://dx.doi.org/10.1145/2856400.2856407.

harmonics (SH). The lighting in the scene is sampled using surfels,
a finite set of discs representing the scene’s static surfaces. Then
light is conveyed through precomputed links and accumulated in
caches placed in a grid or light map. Dynamic and highly detailed
objects can be shaded using the grid of light caches. Using a light
map for static geometry increases the quality on planar surfaces and
saves memory in empty regions.

2 Related Work

Global Illumination and Radiosity Approaches: The problem
of global illumination can be dated back to the formulation of the
rendering equation [Kajiya 1986]. Radiosity [Goral et al. 1984]
is a finite element method that reduces the complexity of global
illumination calculation for environments containing only Lamber-
tian diffuse surfaces. It has been extended to account for glossy
and mirror-like reflections at little additional cost, but with artifacts
due to discretization of directions [Immel et al. 1986]. Hierarchi-
cal radiosity [Hanrahan et al. 1991] allows the illumination of large
scenes and is closely related to the proposed algorithm. Instant ra-
diosity [Keller 1997] is a GPU-friendly technique that approximates
radiosity using only point light sources, yielding interactive frame
rates. [Laine et al. 2007] describe a technique to reuse point lights
and incrementally maintain a good distribution. They achieve real-
time frame rates for single-bounce indirect illumination.

Precomputed radiance transfer: PRT [Sloan et al. 2002] can be
used to simulate diffuse and glossy global illumination from a light
environment at infinite distance. Similar to the proposed algorithm,
PRT uses a precomputation step, allowing for lighting updates in
real-time. Local light sources can be handled by using unstructured
light clouds [Kristensen et al. 2005].

Cache-based Approaches: Because Lambertian diffuse surfaces
exhibit isotropic luminance, indirect diffuse illumination from
static light sources can be precalculated and stored in textures
known as light maps. The technique was extended to account
for small-scale surface details from normal maps [Mitchell et al.
2006]. Lighting can also be precalculated for discrete points in 3D
space. [Greger et al. 1998] store spherical irradiance information
in a so-called irradiance volume. Compressed Radiance Caching
(CRC) reduces the memory overhead due to sparse volume alloca-
tion and chrominance compression in YCoCg color space [Vardis

1Meinl, F. Crytek Sponza. On www.crytek.com
2Persson, E. Saint Lazarus Church. CC BY 3.0, On www.humus.name

Light Surfels Pull Flux

3

Cache
Lighting (Grid)

Render Shadow Maps

Render Scene

Multibounce

Multib
ounce

1

2

4.2

5
4.1

Cache
Lighting
(Map)

*

*

*

+ + +

*

**

*

+ + + +

Φ0 Φ1

Φ3

Φ4

Φ2

FSH4
FSH5

FSH3

LSH0
LSH1 fr

5

2

3

4

Figure 2: Pipeline and light transport overview. After creating standard shadow maps (1), surfels are lit directly (2). The flux per sender Φs
is collected from the clustered surfels (3). Then the light is transported to the caches by precomputed links (4). There are caches within a map
and a grid for different geometry. Finally, neighbored caches are interpolated to sample indirect illumination at a surface point (5) using its
BRDF fr . The same sampling is possible at surfel locations to add a progressive multibounce. The schematic overview shows a selection of
direct light paths and links with ”form factors” FSH . Two caches at the ceiling containing incident radiance LSH are lit through their links.

et al. 2014]. [Lensing and Broll 2013] use a sparse cache distribu-
tion on surfaces to reduce memory and computational overhead in
their LightSkin framework.

Real-time Approaches: Recently, various dynamic real-time
global illumination techniques have been published. [Dong et al.
2009] suggested using virtual area lights for fast rendering of global
illumination using the graphics hardware. Cascaded light prop-
agation volumes (C-LPV) [Kaplanyan and Dachsbacher 2010] is
a method for (mainly) single-bounce indirect illumination in real-
time. Using C-LPV, light is discretized in a voxel volume and ex-
changed between adjacent cells iteratively. Geomerics developed a
real-time global illumination middleware called Enlighten [Martin
and Einarsson 2010] that presumably works similar to the technique
proposed in this paper. Unfortunately, the publicly available details
of Enlighten’s inner workings are sparse. [Thiedemann et al. 2011]
suggested a technique using a voxel representation of the scene for
fast calculation of single-bounce indirect illumination. Voxel cone
tracing (VCT) [Crassin et al. 2011] is based on a similar idea and
enables both diffuse and glossy light bounces in dynamic scenes us-
ing a sparse voxelization of geometry. Latest real-time implemen-
tations can be found in the VXGI framework [Nvidia 2014] and
in [McLaren 2014], where the sparse voxelization is replaced by a
cascaded volume. A comprehensive overview of interactive global
illumination techniques can be found in [Ritschel et al. 2012].

Spherical bases: Many of the mentioned techniques rely on spher-
ical basis functions for the compact representation of lighting in-
formation. Spherical harmonics (SH) [Green 2003], orthographic
basis functions defined on the sphere, are most commonly used. SH
allow for the compact storage of low-frequency spherical functions
with only a few (e.g. 9-25 in the case of PRT) coefficients and have
desirable mathematical properties that greatly accelerate lighting-
related computations [Sloan 2008]. While SH are defined over a
full sphere, hemispherical harmonics (HSH) [Gautron et al. 2004]
allow for an even more compact representation when only hemi-
spherical information is needed. The H-basis [Habel and Wimmer
2010] is another hemispherical basis that preserves the desirable
properties of SH.

We propose a new algorithm which is a combination of different
techniques mentioned. Our contributions are:
• A hybrid method for multiple bounce indirect illumination

that combines hierarchical radiosity and (ir)radiance volumes
• Using surfels for direct light gathering allowing any kind of

dynamic light source in real-time

• A fast GPU implementation with low memory consumption
• High temporal coherency due to a view independent surfel

hierarchy and SH caches

3 Algorithm Overview

The algorithm heavily relies on precomputation of important light
transport paths. The steps that are executed at runtime are shown
in Figure 2. In step (1), shadow maps used for all direct light-
ing calculations are generated. Then, surfels with known material
properties are lit and the outgoing flux is stored in the leaves of a
binary tree (2). In step (3), the flux is propagated up along the hi-
erarchy of sender patches. The cache lighting steps (4) accumulate
the flux, multiplied with light transport factors, from a fixed size
set of linked nodes in the tree. We compute caches in a 3D grid
and a 2D light map to increase the quality on static surfaces and
overcome light bleeding artifacts. At this point, caches contain a
compressed representation (SH) of the incoming spherical radiance
for the respective positions. Finally, indirect illumination is inter-
polated per pixel either from four associated light map caches or
from the surrounding eight grid caches (5). Simultaneously, direct
lighting is computed as usual, using the shadow maps from (1).

The precomputation consists of four tasks and provides the surfel
hierarchy, the cache placement and the linking between sender sur-
fels, i.e. tree nodes, and caches. The tasks are:
• Surfel placement (ideally Poisson-disc sampled)
• Hierarchy building (kd-tree or hierarchical clustering)
• Cache placement
• Link generation (creating SH transport factors)

In the early stages of the runtime pipeline an existing renderer can
be used to illuminate the surfels like a set of diffuse pixels. Using
the existing renderer allows any implemented type of light source to
also affect indirect lighting. This includes further progressive light
bounces. To this end, cache values of the last frame are used to add
another indirection to the surfels’ illumination. Additionally, area
lights can be implemented by sampling an emissive and optionally
animated texture for each surfel. The first-bounce indirect lighting
computation will then include the direct lighting of the area lights.

The light transport itself is simulated by the accumulation of flux
from the illuminated surfel hierarchy. We tested two variants for
the summation process. In the first case, the transport factors are
projected into the SH basis during preprocessing. Hence, the cache

illumination only needs to sum up the stored coefficients from each
of its nL links multiplied with the actual flux. The second solution
is to compute the projection at runtime. This requires the direction
from cache to sender and a scalar transport factor to be provided.
It then takes more ALU instructions but fewer memory accesses
to compute the final SH. The second solution is slightly faster and
has a low memory cost which is invariant to the number of final
SH bands l. On the downside, it is a bit less accurate because the
projection during precomputation preserves more detail.

3.1 Light Transport Solution

To illuminate a point on a surface we need to solve the following
modified lighting equation. The integration scope Ω is 2πsr for
surface points and hemispherical caches or 4πsr for fully spherical
caches. Without loss of generality we assume Ω = 4πsr and SH
caches in the following equations.

Lr(ωo) =
∑
s∈N

∫
Ω

fr(ω, ωo)Vs(ω)Ls(ω)〈nr, ω〉+dω (1)

where N with |N | = nL denotes the set of linked sender patches
for the receiving cache r where Vs(ω) is the sender visibility at
the receiver position and Ls is its radiance. The term 〈nr, ω〉+
is the clamped (positive) cosine lobe at the receiver’s normal nr
and fr(ω, ωo) is the scattering function (BSDF or BRDF depen-
dent on the domain Ω) of the material at the receiver. The visibility
Vs(ω) 7→ {0, 1} is defined on the whole sphere and yields 1 for
all directions in which the patch s is visible, and 0 otherwise. Be-
cause of the Lambertian property and the assumption of a constant
radiance over the entire sender, Ls is constant and does not depend
on the integration over ω. Consequently, the radiosity Bs is equal
to Ls · π again using the Lambertian property. Furthermore, the
receiver-dependent quantities fr and 〈nr, ω〉+ do not involve the
patch s. This allows the following reordering:

Lr(ωo) =

∫
Ω

fr(ω, ωo)

(∑
s∈N

Bs
π
Vs(ω)

)
〈nr, ω〉+dω (2)

Now, Vs(ω)/π is projected into an SH ”form factor” FSHs with co-
efficients cs,i and basis functions yi(ω), where i ∈ [0, . . . , l2−1].
Thus, a link is represented as FSHs(ω) =

∑
i cs,iyi(ω). The first

value cs,0 roughly corresponds to the form factor in radiosity, all
cs,i with i > 0 additionally preserve directional information.

cs,i =
1

π

∫
Ω

yi(ω)Vs(ω)dω

=
As
N ′π

N′∑
j=1

yi(ωj)Vs(ωj)
〈ns, ωj〉+

d2
j

(3)

Equation 3 is numerically integrated by Monte Carlo integration as
shown in appendix A. Thereby, N ′ is the number of rays used to
sample the visibility of the sender, where all ωj are chosen to point
to some position on the sender. As is the surface area of the sender
and dj is the distance from the cache to the sampling position.

Using FSHs , the incident radiance LSH at a cache can be computed
as:

LSH =
∑
s∈N

BsFSHs (4)

Eventually, in the cache lighting step (4) of Figure 2, this sum is
computed for all caches. For reasons of performance we store flux
Φs instead of Bs (see Section 4.1).

3.2 Per Pixel Lighting

Once the caches are computed, the illumination can be applied to
pixels in an arbitrary renderer. In case of dynamic geometry and
objects without light maps the 3D radiance grid is interpolated tri-
linearly and the resulting SH function is evaluated. For static light-
mapped geometry four caches are interpolated bilinearly instead.
To guarantee that all four texels are filled, we apply a dilation over
the eight neighbors to prevent artifacts at texture seams.

Given Equations 2 and 4, solving the indirect illumination at run-
time can be reduced to a dot product of SH coefficients. Let the
term fr(ω, ωo)〈nr, ω〉+ be given as XSH with SH coefficients cX .

Lr(ωo) =

∫
Ω

fr(ωi, ω)LSH〈nr, ω〉+dω

= 〈LSH , XSH〉 (5)

It is invariant whether SH coefficients are interpolated first and then
evaluated or vice versa. Let wi be the interpolation weights. The
following holds true because of the distributive property:∑

i

wi

(∑
j

cLi,jcX,j

)
=
∑
j

(∑
i

wicLi,j

)
cX,j (6)

Since we can use the hardware to interpolate the coefficients effi-
ciently we interpolate first and then perform the multiplication.

For the evaluation, XSH must be provided at runtime because it
depends on the incident angle ωi. Our solution is to split the
BRDF into a diffuse and a specular term and solve the integral
for two different SH projections XSH . In the diffuse case this is
(ρ
π

cos θr) 7→ DSH where DSH is the projection of a scaled co-
sine lobe which is aligned in direction of the surface normal n. The
factor ρ/π is the reflectance defined by the material. Similarly, the
function for the specular part is defined as (n+1

2π
cosn θ) 7→ SSH

where θ is the angle between incident light and the half vector in-
stead of n and (n + 1)/(2π) is used to normalize the lobe to a
volume of one.

To compute the SH coefficients for DSH and SSH we need to inte-
grate over a directed half space which is possible but complex. It is
also possible to integrate over an upward-oriented cosine lobe and
rotate the result later. Since the lobe is rotationally invariant around
the up axis, only projections on zonal harmonics y0

l are non-zero.
For SSH these are:

c0l =
n+ 1

2π

∫ 2π

0

∫ π/2

0

y0
l (θ, φ) cosn θ sin θdθdφ (7)

The rotation of the zonal harmonic into some directiond is obtained
as (see zonal harmonics in [Sloan 2008]):

cml =

√
4π

2l + 1
c0l yml (d) (8)

Thus, the cosine lobe evaluation results in a single constant factor
per band which is multiplied before the SH evaluation in direction
d. Those factors are given in appendix B for SSH . For DSH the
same can be done by removing n and replacing the normalization
factor from Equation 7 with ρ/π.

We also experimented with HSH representation for the caches in
the light map. Unfortunately, directly integrating the cosn lobe ori-
ented in an arbitrary direction is difficult for HSH. We found no
closed solutions for n 6= 1 or more than 3 bands. Also, rotations are
not feasible. In the original formulation of the HSH basis, [Gautron
et al. 2004] suggest the rotation through an intermediate SH repre-
sentation. However, this is impractical in our case since the rotation
has to be done for each pixel during shading. [Elhabian et al. 2011]
used numerical integration at this point, which also is unfeasible at
runtime. Hence, we had to discard the HSH basis for light maps.

(a) Xorshift RNG (b) Halton-sequence (c) Halton-sequence with
additional relaxation

Figure 3: Differently generated distributions of 30000 surfels.

4 Implementation Details

While the previous section provided the overall idea of the algo-
rithm we now provide an insight to details and optimizations.

4.1 Flux in Surfels and Hierarchy

In the derivation of lighting formulas in Section 3.1 the radiosity
Bs is computed from the radiance Ls and stored for the surfels.
However, using Bs leads to an overhead in the pull step, because
radiosity is defined as flux per area and an area weighted average is
necessary. Thus, the area must be fetched repeatedly during pulling.

Instead of radiosity, flux Φ is cumulated directly without aver-
aging. It turned out that propagating flux through the hierarchy
is 1−2.5 ms faster, because the pulling is limited in bandwidth.
Therefor, Bs must be converted to flux Φs by multiplying with the
surfel’s area during illumination of the leaves. Since leaf surfels
are of the same area this is a constant factor. During cache light-
ing, Φs must be converted back to radiosity by a division by the
sender’s area which is the sum of all surfel areas in the respective
subtree. We incorporate this area by scaling FSH accordingly dur-
ing precomputation and hence do not add any costs at runtime. The
scaling of FSH is allowed due to distributivity of the sum in the SH
evaluation.

4.2 Surfel Placement

The surfels are the primary samples which are illuminated during
runtime. Optimally, they have a Poisson disc distribution over all
meshes. Gaps between surfels are allowed, but it must be assured
that the area of all surfels equals the area of the geometry. The
quality of this step has a noticeable impact on the final results.

To distribute surfels each triangle is sampled proportional to its
area. The area of too small triangles is accumulated until their
combined area is sufficient to spawn another surfel. Using a low-
discrepancy Halton-sequence [Halton and Smith 1964] improves
the distribution compared to a Xorshift random number generator
[Marsaglia 2003] as shown in Figure 3. To further increase the
quality we subsequently relax the distances. For that the surfels
are repelled from their nearest neighbors iteratively, allowing only
movements along the tangential plane.

There are other approaches to target this problem as the Dart
Throwing in [Cline et al. 2009]. Most methods require a geodesic

distance to achieve the Poisson disc distribution over the surfaces.
These methods could be evaluated in future work. Our approach is
simpler and faster and we do not expect a qualitative gain through
more complex algorithms compared to the results in Figure 3c.

4.3 Surfel Clustering and Tree Metric

The next task in the precomputation is to build a hierarchy of the
samples. This is required for the hierarchical light transport simu-
lation, where each cache is illuminated only by a cut of limited size
through that hierarchy.

It is possible to quickly build a kd-tree or a similar space partition-
ing tree over the surfels. Nevertheless, we considered hierarchical
agglomerative clustering (HAC) as higher quality option to achieve
more meaningful sender patches. We implemented the generic ap-
proach from [Müllner 2011] with a custom distance metric:

d(a, b) =
‖xa−xb‖2

‖xmax−xmin‖2
+Cn(1−〈na,nb〉)+Cb

|Aa −Ab|
max(Aa, Ab)

The most important term is the squared distance between the cluster
centers x to create compact clusters. It is normalized by the maxi-
mum scene extent. The next term includes the deviation of normals
n to avoid the early clustering of opposite faces (e.g. two sides of a
wall). Further, we added a penalty on the tree balancing, where the
area A is a direct measure of the number of leaves since all surfels
have the same size. The balancing is important for the performance
of the pull step during runtime. The two factors Cn and Cb weight
the importance of the normal and the balancing term. Values of
Cn=0.1 and Cb=0.02 worked well for all our scenes.

4.4 Cache Placement

For dynamic objects caches are placed in a uniform grid with man-
ually set resolution. Placing caches for the light map is more in-
volved. Therefor, we iterate over all light mapped triangles in the
scene and locate the texel centers. For a triangle the bounding rect-
angle is determined in texture space and each of the texels is tested
if it is within the triangle. The position of the cache is computed by
the texel’s position within the triangle. Texels in empty areas of the
light map are not filled by this process. As mentioned, we duplicate
probes along texture seams by dilation to allow linear interpolation.

4.5 Link Generation

The target of link generation is to determine the nL most impor-
tant sender patches with respect to a chosen cache. We use the
summed solid angle of all clustered surfels as metric for the im-
portance, since the lighting conditions are not known in advance.
First, the term cs0 (equation 3 for the constant basis function) is
computed per surfel and summed up along the hierarchy. Note that
this term includes visibility and invisible parts of the scene become
unimportant. Afterwards, links are chosen top down by refining the
cluster with the largest value iteratively until a cut of nL elements
is found. This cut covers the entire visible part of the scene.

Table 1: Comparison to other real-time global illumination algorithms. (* a progressive multibounce is possible.)

Technique Ind. diffuse Ind. specular Dyn. lights Dyn. objects Performance

Ours n (progressive) FFF full receive only FFF

VCT [Crassin et al. 2011] 1* FFF good (rsm) full FFF

C-LPV [Kaplanyan and Dachsbacher 2010] 1* FFF good (rsm) full (coarse) FFF

CRC [Vardis et al. 2014] n (coarse) FFF good (rsm) full (medium) FFF

PRT [Sloan et al. 2002] n FFF only environmental no FFF

LightSkin [Lensing and Broll 2013] 1 FFF good (rsm+) full (coarse) FFF

All links for a cache are stored sequentially such that the cache
index times nL gives an offset to the first link. A link contains the
target cluster index and either the form factor FSH or a direction
vector plus a scalar form factor (see Section 4.6).

4.6 Alternative Link Precomputation

In Section 3.1 FSH was precomputed as a set of SH coefficients.
Consequently, a lot of values must be stored and fetched during
cache lighting. As stated, it is also possible to store a direction and
a scalar transport factor instead and to compute the projection at
runtime. This requires a different projection technique opposed to
Monte Carlo sampling. Now, a larger solid angle must be projected
directly. A solution for that can be achieved by integration and
rotation again.

This optimization is a bit less precise, because the projection is sim-
plified and preserves less details in theory. However, it still yields
results very similar to those before. Also, it reduces memory con-
sumption considerably and slightly increases performance, too.

4.7 Coefficient Textures

During runtime all SH coefficients need to be accessed efficiently.
In our tests with up to 4 bands and trichromatic values this leads up
to 48 coefficients per cache and 16 per link.

The coefficients for the links are stored sequentially in a Shader
Storage Buffer. Since bandwidth is the bottleneck of the cache
lighting we encoded the coefficients in 16-bit floats.

The coefficients of LSH are stored in 2D/3D textures respectively
to utilize hardware interpolation. We packed all coefficients into a
single texture, such that the two textures have the sizes X×(Y · l2)
and X×Y×(Z · l2). Due to the necessity of write accesses only
RGBA formats are available, where one channel remains unused.
Again we used 16-bit floats per value to decrease the bandwidth.

5 Evaluation

First, we will compare our method to other algorithms and the un-
biased solution. Afterwards, the performance is benchmarked and
time-quality tradeoffs are shown.

5.1 Comparison to other Techniques

Table 1 summarizes the most important properties of related illu-
mination algorithms. Methods which rely on precomputations are
naturally faster but more limited for dynamic content. Here, only
CRC has a similar performance, because of their advanced cache
allocation optimization. C-LPV, VCT and LightSkin can perform
at real-time frame rates in medium quality. However, the original
VCT implementation using a sparse octree is only interactive, but
also offers the best quality of all compared methods.

Certainly, all of the techniques support at least one indirection of
diffuse lighting. The qualitative comparison of Figure 4 shows that
our technique is much closer to the ground truth than LPV and VCT.
Our approach does not suffer from light bleeding because of the
light map caches which are fully aware of the geometry.

Only CRC and PRT already include solutions for multiple bounces.
Thereby, CRC is progressive, as ours, but uses a coarse approxima-
tion for subsequent bounces. Contrary, our technique uses the same
approximation quality for all bounces. In C-LPV and VCT it is the-
oretically possible to induce indirect illuminated geometry into the
voxel volume to extend the approaches towards multiple bounces.

Almost all other algorithms use reflective shadow maps to sam-
ple direct illumination. Therefore, dynamic lights are supported,

(a) Light Propagation Volumes (b) Voxel Cone Tracing

(c) Ours (d) Ground Truth

Figure 4: Comparison of indirect diffuse lighting (multiple
bounces). Image (a) taken from [Kaplanyan and Dachsbacher
2010], (b) and (d) taken from [Crassin et al. 2011].

Figure 5: Comparison of a textured area light (four asterisks and a
ring). Left: Ours with 40k surfels, 13785 caches and many bounces
at 195 fps. Right: path-traced 62k rays/pixel, 16 bounces, >1h.
Artifacts are visible in the shadow details, on the two objects illu-
minated by the grid and at edges of the box.

(a) Specular 2 SH bands (b) Specular 3 SH bands

(c) Specular 4 SH bands (d) Runtime Projected 4 SH bands

Figure 6: Glossy reflections with a Blinn-Phong-exponent of 20.
The indirect lighting is amplified by a factor of 2 to emphasize the
differences. The alternative implementation is similar, but not equal
as the inlay of the 32×difference image shows.

but computation time increases rapidly with the number of light
sources. In our solution a fixed number of surfels, nS , is lit using a
standard rendering pipeline. Hence, we are able to support arbitrary
lights at the native performance of the rendering engine.

The ability to use arbitrary light sources also includes area lights
which can have color variations and animations using textures. The
first bounce indirect light includes the direct light of area light
sources including their shadow. Figure 5 compares our algorithm
to a path-traced ground truth. It shows a high accordance at first.
However, the cache interpolation leads to some artifacts. Most of
them are missing shadow details (ceiling) and artifacts along edges,
where the placement of caches is a problem. Also, the Bunnyduck
has a perceptible different shading, because of the SH compression
and cache interpolation.

We also experimented with specular materials. Figure 6 shows the
results using SH representation with two to four bands. Most other
techniques could be extended in the same way, so this is not a spe-
cific advantage of our algorithm. The only requirement for specular
sampling is to store incident radiance to be able to sample into arbi-
trary outgoing directions afterward. Here, VCT achieves reflections
for higher exponents at the costs of a highly detailed octree and a
fine grained cone marching. LightSkin also achieves slightly higher
coefficients by the use of local virtual lights which are created for
known reflection directions. However, the model of known reflec-
tion directions does not apply to normal mapped geometry.

The accompanying video shows the illumination of dynamic ob-
jects. We are able to light those objects without including their
indirect shadows or reflections. VCT, LPV and CRC use voxelized
blocker volumes which can be generated in real-time. This could
be included in our technique, since for each link the direction as
well as the solid angle are known and cones can be traced, too. An
advantage is, that only the dynamic objects need to be voxelized.
However, since voxelization is not a native part of our technique it
is considered as a plugin-extension and therefore not implemented.
Contrary, LightSkin explicitly projects blocker proxies to generate
indirect shadows. This could also be implemented by a cone-sphere
test in our algorithm, but we consider providing the proxies more
complicated and less performant than the voxelization approach.

5.2 Failure Cases

First, there are common artifacts of light maps and interpolations in
grids. Most noticeable are misplaced caches as in Figure 7a. This
can be avoided by better light mapping of the geometry or back-face
culling during the ray casted visibility tests.

(a) Light map caches (black
ones) are placed behind
other geometry.

(b) A small spotlight (top
right) shows discontinuities
in linkage on the floor.

(c) Light bleeding (ampli-
fied by ×4096): the upper
corridor should be black

Figure 7: Possible artifacts of the algorithm.

Also, there are algorithm specific problems, which are hardly vis-
ible under usual lighting conditions. In Figure 7b only a few sur-
fels are lit directly. Neighbored caches use different approximating
links due to local decisions in the link generation step.

Light bleeding occurs in two cases. Besides interpolation in the
grid the clustering of senders can introduce this artifact (Figure 7c).
Caches in the upper corridor are linked to clusters which partially

contain surfels from below. However, this effect is small and not
perceptible if multibounce is enabled or more lights are in the scene.

5.3 Performance

Table 2 lists the costs of the individual steps as well as the whole
frame time on different machines for a high and a moderate quality
setup. We also included a CPU-reference implementation, because
we expected that some steps scale better on CPU than on GPU. The
timings for the upload are not listed, but lead to an additional over-
head which is included in the total frame time of CPU experiments.

Table 2: Performance breakdown in ms for two different settings at
a resolution of 1920×1080 for the sponza scene.
1 settings of Figure 6 (d): nC=10585, l=4, nL=254, nS=128k.
2 moderate settings: nC = 10585, l = 3, nL = 128, nS = 32k.

Sh
ad

ow
M

ap
s

Su
rf

el
L

ig
ht

in
g

Pu
ll

(S
en

de
r

H
ie

ra
rc

hy
)

C
ac

he
L

ig
ht

in
g

Sh
ad

in
g

To
ta

lF
ra

m
e

GTX 9801 0.21 0.09 1.72 2.27 2.59 7.17
GTX 850M1 0.85 0.47 8.88 11.1 9.96 33.3
K5100M1 0.58 0.25 11.0 15.7 6.76 34.9
GTX 9802 0.21 0.04 0.38 0.58 1.99 3.65
GTX 850M2 0.85 0.21 1.27 3.09 7.93 15.3
K5100M2 0.58 0.10 1.26 2.84 5.32 11.26

i7-4790S1 – 8.12 5.00 116 – 131
i7-4510U1 – 7.06 8.04 148 – 198
i7-4790S2 – 4.87 1.13 11.5 – 21.1
i7-4510U2 – 2.57 1.34 28.0 – 33.8

The most expensive steps are Pull, Cache Lighting and Shading. In
almost no case is the CPU faster than the GPU implementations.
Due to its recursive nature, only the pull step achieves similar or
better CPU timings on some hardware configurations. However,
the overhead for up- and download of the surfel hierarchy make a
hybrid solution pointless. The cache lighting costs are moderate
and can be controlled by parameters which are explained in detail
later. Shading is comparable expensive, but rasterization and direct
lighting add costs beside the global illumination, too.

Our technique scales well with larger resolutions. We experimented
with resolutions of 960×540, 1920×1080 and 3840×2160 with
setup one. On GTX 980, the shading with indirect illumination
takes 0.99ms, 2.59ms and 8.84ms respectively and 0.67ms, 1.41ms,
3.51ms without. All other steps are independent of the resolution.

In total, four parameters influence the performance and quality.
Those are the number of SH bands l, the number of caches nC ,
their number of links to the senders nL and the number of surfels
nS . All of them are investigated deeper in the following.

The two parameters nS and nL have similar effects on the quality as
they both reduce the detail of the light transport itself. In Figure 8
the influence of both parameters is visualized. As expected they
have an almost proportional impact on the respective pipeline step.
Thereby the surfel illumination scales well with an increasing nS ,
whereas the pull gets more expensive faster.

The first column of images in Figure 8 shows, that 32 links are not
sufficient. In general, reducing nS is more stable than reducing nL.
More links make the technique robust against variances in the surfel
density. More surfels increase details close to the cache, but lead to
a degradation of far links when nL is not increased simultaneously,

Number of Surfels (Timings for Surfel Relighting+Pull)
16k (0.03 + 0.20 ms) 32k (0.04 + 0.38 ms) 64k (0.06 + 0.76 ms) 128k (0.08 + 1.72 ms)

32

0.22 ms 0.24 ms 0.25 ms 0.25 ms

64

0.41 ms 0.43 ms 0.45 ms 0.49 ms

12
8

0.96 ms 0.99 ms 1.08 ms 1.17 ms

L
in

ks
pe

r
C

ac
he

(T
im

in
gs

fo
rC

ac
he

R
el

ig
ht

in
g)

25
4

1.81 ms 1.93 ms 2.04 ms 2.27 ms

Su
rf

el
s

Figure 8: Influence of the two parameters surfel-count nS and links per cache nL on performance
and quality. A larger nS takes more time for surfel relighting as well as pull and reduces cache
efficiency of the cache relighting (see overlayed numbers). More links increase time for cache
relighting proportionally.
In general fewer links result in a less stable light transport (top rows) while fewer surfels reduce
these artifacts at the costs of details and energy preservation (left column).
The images in the last row show the surfel distribution for the respective column.

Ground Truth

because more links are used for the close details. Since details are
blurred through the SH compression anyway it is better to use a
smaller surfel density in general.

The parameter nC is set by the grid and the light map resolution.
Using more caches reduces the artifacts due to interpolation (e.g.
shadow bleeding) and increases the details in indirect shadows. On
the other hand, cache lighting becomes the most expensive step in
some configurations (e.g. see Table 2 K5100M1). Still, cache den-
sity should be kept as high as possible. Here, a view dependent

adaptive choice of the cache density would increase quality and
performance at the same time. However, caches outside the view
frustum cannot be rejected if multiple bounces of light are desired.

Reducing the number of SH bands l reduces the storeable light de-
tails in the caches as shown in Figure 6. For diffuse lighting, 3
bands usually suffice. However, reducing l decreases the memory
consumption and costs of the cache illumination and the shading
stage, because fewer coefficients need to be fetched/written. Ta-
ble 3 shows that the cache lighting scales well with the number of

Table 3: Influence of the number of SH bands on performance (ms)
for the configuration in Figure 6.

Cache Lighting Shading
SH bands 2 3 4 2 3 4

GTX 980 0.92 1.35 2.27 1.68 1.98 2.59
GTX 850M 3.84 7.19 11.1 7.04 7.93 9.96

coefficients. Although 4 bands have four times the number of co-
efficients than 2 bands, the lighting only takes 2.5× and 2.8× as
much time on the two tested GPUs. During shading the influence
of more bands is even less noticeable (1.5× and 1.4× from 2 to 4
bands) as direct lighting and other rendering costs hide the work.
All other steps are invariant to the cache representation.

Since cache lighting is bandwidth bound, the proposed runtime pro-
jection from Section 4.6 improves performance. This alternative
replaces fetches by more ALU-instructions, which are faster at this
point. Thus, the cache lighting for four bands takes 0.93 ms and
0.37 ms on GTX 980 for the setups 1 and 2 respectively. Compared
to 2.27 ms and 0.58 ms from table 2 this is a noticeable performance
gain at similar quality (see Figure 6).

5.3.1 Memory Consumption

The memory consumption of our algorithm is determined by three
factors: surfels, caches and links. Table 4 gives an overview of
the individual costs. For each surfel, area, position, normal, texture
coordinates (light map) and albedo need to be stored. We manu-
ally compress the normal to 32 bit as well as UV+RGB+Emissive
into a single RGBA16UI texture and use an RGBA32F texture for
surfel position and area. Since we use a binary tree, 2nS nodes
with a surfel ID, a child ID and flux have to be stored. Thereby,
the flux is encoded into a shared exponent format with 3x9 bit un-
signed mantissa and 5 bit exponent (32 bit in total). For the caches,
the trichromatic radiance is stored in RGBA16F textures (see, 4.7),
where each coefficient takes 2 bytes, but the alpha channels are un-
used. Coefficients in links are also stored as 16 bit floats together
with a 32 bit surfel ID. Their total count is nL · nC .

The total memory consumption for the high quality setup in the
Crytek Sponza scene is 94.77 MiB and 29.51 MiB for the moderate
setup. This is comparable to other techniques as VCT and C-LPV.
If SHs are not stored and link-projection is done at runtime the costs
for the two setups become 36.64 MiB and 17.30 MiB instead which
is less than the requirements of comparable techniques.

Most of the costs result from the links. The costs can be reduced by
decreasing one of the parameters nL, l, nC or by projecting at run-
time. The first three options all reduce quality significantly, whereas

Table 4: Memory consumption of individual components with num-
bers for the high quality settings 1. Using the runtime projection for
links (Section 4.6) requires the same memory as 2-band SH but sup-
ports a dynamic band number.

Per Instance Count1 Total

Surfels 28 B 128k 3.42 MiB
Surfel Nodes 12 B 256k 2.93 MiB
Caches SH2 32 B 10k 0.31 MiB
Caches SH3 72 B 10k 0.69 MiB
Caches SH4 128 B 10k 1.22 MiB
Link SH2/RTP 12 B 2540k 29.07 MiB
Link SH3 22 B 2540k 53.29 MiB
Link SH4 36 B 2540k 87.20 MiB

the runtime projection is visually similar (see Figure 6 and supplied
video) and allows more bands without higher memory costs.

6 Conclusions and Future Work

We proposed a new algorithm of cache based indirect lighting
which relies on precomputations. Compared to similar methods
this one is faster and requires less memory. It natively supports any
type of dynamic lighting including multiple diffuse indirections at
very low costs. However, due to the precomputations dynamic ob-
jects can only be shaded and do not cast indirect shadows or reflect
light back to the scene.

As mentioned before the missing shadows and reflections of dy-
namic objects could be included by a voxel cone tracing approach.
This is possible with a voxelization of the dynamic parts only in-
stead of the whole scene.

Another possible optimization is to reduce the number of caches
view dependent. One option is the dynamic cache allocation from
[Vardis et al. 2014] and another would be the use of a cascaded
volume. In any case all caches must have precomputed linkage, but
it is not necessary to illuminate and use all of them.

Besides sparse cache selection a dynamic link selection is interest-
ing. Currently only geometric visibility is considered. The albedo
or the current light situation are not included. It is thinkable to re-
duce the number of links based on the current flux at runtime.

To improve specular reflections it would be interesting to test
the SH chrominance compression, also proposed by [Vardis et al.
2014]. It is possible to use more bands at the same costs by allowing
a higher error for chrominance than for luminance.

7 Acknowledgements

This work is partially supported by the German Research Founda-
tion (DFG), Grant Nr. GR 3833/3-1.

References

CLINE, D., JESCHKE, S., WHITE, K., RAZDAN, A., AND WONKA,
P. 2009. Dart Throwing on Surfaces. Computer Graphics Forum
vol. 28(4), 1217–1226.

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISE-
MANN, E. 2011. Interactive Indirect Illumination Using Voxel
Cone Tracing. Computer Graphics Forum vol. 30(7), 1921–1930.

DONG, Z., GROSCH, T., RITSCHEL, T., KAUTZ, J., AND SEIDEL,
H.-P. 2009. Real-Time Indirect Illumination with Clustered Visi-
bility. In Proc. Vision, Modeling and Visualization, 187–196.

ELHABIAN, S., RARA, H., AND FARAG, A. 2011. On the Use of
Hemispherical Harmonics for Modeling Images of Objects Under
Unknown Distant Illumination. In Proc. IEEE Int. Conference on
Image Processing, 1109–1112.

GAUTRON, P., KRIVANEK, J., PATTANAIK, S. N., AND BOUA-
TOUCH, K. 2004. A Novel Hemispherical Basis for Accurate
and Efficient Rendering. In Proc. 15th Eurographics Conference
on Rendering Techniques, 321–330.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BAT-
TAILE, B. 1984. Modeling the Interaction of Light Between Dif-
fuse Surfaces. In Computer Graphics, vol. 18(3), 213–222.

GREEN, R. 2003. Spherical Harmonic Lighting: The Gritty Details.
In Archives of the Game Developers Conference.

GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG,
D. P. 1998. The Irradiance Volume. IEEE Computer Graphics
and Applications vol. 18(2), 32–43.

HABEL, R., AND WIMMER, M. 2010. Efficient Irradiance Normal
Mapping. In Proc. ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 189–195.

HALTON, J. H., AND SMITH, G. B. 1964. Algorithm 247: Radical-
inverse Quasi-random Point Sequence. Communications of the
ACM vol. 7(12), 701–702.

HANRAHAN, P., SALZMAN, D., AND AUPPERLE, L. 1991. A Rapid
Hierarchical Radiosity Algorithm. In Computer Graphics, vol. 25,
197–206.

IMMEL, D. S., COHEN, M. F., AND GREENBERG, D. P. 1986.
A Radiosity Method for Non-diffuse Environments. In Computer
Graphics, vol. 20(4), 133–142.

KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graph-
ics, vol. 20(4), 143–150.

KAPLANYAN, A., AND DACHSBACHER, C. 2010. Cascaded Light
Propagation Volumes for Real-time Indirect Illumination. In Proc.
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 99–107.

KELLER, A. 1997. Instant Radiosity. In Proc. SIGGRAPH 97,
Annual Conference Series, 49–56.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN, H. W.
2005. Precomputed Local Radiance Transfer for Real-time Light-
ing Design. ACM Trans. Graph vol. 24(3), 1208–1215.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental Instant Radiosity for Real-time
Indirect Illumination. In Proc. 18th Eurographics Conference on
Rendering Techniques, 277–286.

LENSING, P., AND BROLL, W. 2013. LightSkin: Real-Time Global
Illumination for Virtual and Mixed Reality. In Proc. 5th Joint Vir-
tual Reality Conference, 17–24.

MARSAGLIA, G. 2003. Xorshift RNGs. Journal of Statistical Soft-
ware vol. 8(14), 1–6.

MARTIN, S., AND EINARSSON, P. 2010. A Real-Time Radiosity
Architecture for Video Games. In SIGGRAPH 2010 Courses.

MCLAREN, J. 2014. Cascaded Voxel Cone Tracing in The Tomor-
row Children. In Computer Entertainment Developers Conference,
CEDEC.

MITCHELL, J., MCTAGGART, G., AND GREEN, C. 2006. Shading
in Valve’s Source Engine. In SIGGRAPH 2006 Courses.

MÜLLNER, D. 2011. Modern Hierarchical, Agglomerative Cluster-
ing Algorithms. arXiv:1109.2378.

NVIDIA, 2014. Voxel Global Illumination.

RITSCHEL, T., DACHSBACHER, C., GROSCH, T., AND KAUTZ, J.
2012. The State of the Art in Interactive Global Illumination. Com-
puter Graphics Forum vol. 31(1), 160–188.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed
Radiance Transfer for Real-time Rendering in Dynamic, Low-
frequency Lighting Environments. ACM Trans. Graph vol. 21(3),
527–536.

SLOAN, P.-P. 2008. Stupid Spherical Harmonics (SH) Tricks. In
Archives of the Game Developers Conference.

THIEDEMANN, S., HENRICH, N., GROSCH, T., AND MÜLLER, S.
2011. Voxel-based Global Illumination. In Proc. ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 103–110.

VARDIS, K., PAPAIOANNOU, G., AND GKARAVELIS, A. 2014.
Real-Time Radiance Caching using Chrominance Compression.
Journal of Computer Graphics Techniques vol. 3(4), 111–131.

A Projecting the Transport Factor to SH

In Section 3.1 we formulated the light transport in dependence of an
SH factor which primarily contains the visibility of a sender cluster.

cs,i =
1

π

∫
Ω

yi(ω)Vs(ω)dω

Now, the integral can be solved through Monte Carlo sampling.
Therefor the integral is replaced by a sum overN samples and each
sample is weighted by its inverse sampling probability.

cs,i =
1

Nπ

N∑
j=1

1

p(ωj)
yi(ωj)Vs(ωj)

For a uniform sampling on a sphere the probability is p = 1/4π.

cs,i =
4

N

N∑
j=1

yi(ωj)Vs(ωj) (9)

Equation 9 computes the correct solution, but casting N rays is com-
putational expensive. Especially, if the target sender only covers a
small fraction of the sphere many rays yield zero. We are able to
decrease this overhead by casting only rays into the direction of the
sender patch. To incorporate this into the Monte Carlo integration
we can weight the result with the probability to hit the patch if it
is not occluded. I.e. we multiply the result with the solid angle of
the sender divided by the full spherical angle. Since we know each
other ray would simply add zero to the sum this has the same effect
as using a larger N .

w(ω) =
As〈ns, ω〉+

d2
· 1

4π
(10)

Note that the weighting factor w depends on the sampling direction,
as the distance d and the angle to surface θs depend on it. Inserting
this into equation 9 and replacing the samples by the subsetN ′ into
the direction of the sender yields the final result.

cs,i =
As
N ′π

N′∑
j=1

yi(ωj)Vs(ωj)
〈ns, ωj〉+

d2
j

(3)

B Cosine Lobe Integration on SH

As explained in section 3.2 the integration of a camped cosine lobe
and a function in SH representation can be done over projection
to zonal harmonics (Equation 7) and an SH rotation (Equation 8).
Equation 8 has the structure of a usual sampling yml (d) multiplied
by a factor s which depends on l and n only.

sl(n) =

√
4π

2l + 1
c0l (11)

Hence, there is a single factor per band depending on the exponent
n which can be computed at runtime and inserted to the normal
SH lookup. Solving the integral for c0l and inserting the result to
Equation 11 gives:

s0(n) = 1

s1(n) =
n+ 1

n+ 2

sl(n) = sl−2(n)
n+ 2− l
n+ 1 + l

Hence, integrating the specular cosine lobe which is aligned in di-
rection d is computed as:

cml = sl(n)yml (d) (12)

