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Abstract

Multiple Importance Sampling is a tool to weight the results of different samplers
with the goal of a minimal variance for the sampled function. If applied to light
transport paths, this tool enables techniques such as Bidirectional Path Tracing
and Vertex Connection and Merging. The latter generalizes the path probability
measure to merges—also known as photon mapping. Unfortunately, the resulting
heuristic can fail, resulting in a noticeable increase of noise. This gem provides an
insight into why things go wrong and proposes a simple-to-implement heuristic that
is closer to an optimal solution and more reliable over different scenes. The trick is
to use footprint estimates of sub-paths to predict the true variance reduction that
is introduced by reusing all the photons.

1 Introduction

In light transport simulation there is a multitude of sampling strategies, visualized
in Figure 1. By tracing paths, beginning at a sensor, we can randomly find light
sources in the scene and compute their contributions through the sampled paths.
Additionally, next event estimation, the connection toward a known light source,
helps to locate smaller light sources. Both sampling strategies together form the
Path Tracing (PT) algorithm, introduced by Kajiya [8]. In Bidirectional Path Tra-
cing (BPT) [13, 9] all possible connections between a random view sub-path and
a random light sub-path provide additional samplers. BPT is able to find caustic
paths using the camera connection, something not possible in PT.

Veach [14] introduced several weighting strategies to combine all these different
samplers in an almost-optimal way. The most-used strategy is known as the balance
heuristic, which reads
— napa (1)

2bes TPy’

where a and b are indices of samplers, from the set S of possible samplers, with
probability densities p, ;). If a sampler is applied multiple times, this is accounted
for by the factors ny, ;). In PT and BPT, n is always one. The result of the balance
heuristic is a weight w for each sampler such that all weights on a path sum up
to one. For example, if there are different possibilities to find the same path, the
weighted average of all options is used.
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Figure 1: Visualization of paths that are found and not found by different methods. The
area and the point light at the ceiling cause different challenging light effects.

Another successful method for light transport simulation is Photon Mapping
(PM), introduced by Jensen [7]. In a first pass, light sub-paths are traced and their
vertices are stored as photons. In a second pass, view sub-paths are generated and
nearby photons are merged with the current path. This introduces a small bias, but
is capable of finding even more light effects (reflected and refracted caustics) than
BPT. Georgiev et al. [3] as well as Hachisuka et al. [4] derived a path probability
that makes merges (aka Photon Mapping) compatible with Veach’s MIS weights.
Since all ng photons can be found at each view sub-path vertex, there is a high
amount of path reuse. This decreases the variance of merges, which is modeled by
setting n = ng in the balance heuristic (Equation 1) for the merge samplers. The
combined algorithm consisting of BPT and PM is called Vertex Connection and
Merging (VCM) [3].

Unfortunately, the choice of ng in the balance heuristic can cause severe miscal-
culations with respect to variance, as first observed by Jendersie et al. [6]. Figure 2
demonstrates a scene with noticeable problems. While, compared to BPT, VCM
only adds new samplers and therefore should only decrease the variance, it shows
more noise. In most scenes this effect is not as noticeable as in the chosen example.
However, using our new heuristic reduces the variance in any scene compared to
the previous heuristic, leading to faster convergence.
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Figure 2: Closeups of Veach’s BPT test scene with 50 iterations each. BPT outperforms
VCM due to a non-optimal MIS-weight. OVCM improves the merge-weights
and achieves a lower variance.

1.1 Why Assuming Full Reuse Causes a Broken MIS Weight

The variance of a complete transport path consists of the variances of both the view
and light sub-paths. Mathematically, the variance of the entire path is a product
of two random variables X (without loss of generality, the view sub-path) and Y
(light sub-path):

V[XY] =V[X]E[Y)? + V[Y|E[X]? + V[X]|V[Y]. (2)

In addition to the variances of the two sub-paths, the total variance depends on
the expected values E[X] and E[Y], which at the vertex are the incoming radiance
(E[Y]) and its adjoint, the incoming importance (E[X]).

By using n¢ photons, the variance of the light sub-paths in a merge is reduced by
a factor of ng. However, if most of the total variance stems from the view sub-path,
the true gain for the path’s variance is much smaller than ng. Using ng photons will
reduce V[Y], and so we divide only the second and third terms in Equation 2 by this
factor. Therefore, if the total variance is dominated by the first term, V[X]E[Y]?,
then the variance with respect to path reuse will not change much and using ng
directly will cause a severe overestimation of the event’s likelihood.

2 The Effective Reuse Factor

To integrate the preceding observation into the balance heuristic, we want to change
the factor n for each of the merge samplers. The optimal factor tells us how much
the variance of the full path is reduced when merging multiple sub-paths. Starting
at the variance property from Equation 2, the true effective use of a merge sampler
is
B VIX]E[Y]? + VIY]E[X]? + VIX]V[Y]
VIX|E[Y]? + ;L (VIY]E[X]? + V[X]V[Y])’

(3)

which is the quotient of the variance with and without using the light sub-path
sampler ng times. Naturally, Equation 3 falls back to n = 1 if ng = 1. Also,
n = ng is reached only if we have zero view-path variance. This theoretical solution
still lacks applicability because we need stable estimates of V' and E based on the
single sub-path sample we have at hand.
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Figure 3: Analogy between footprint size (blue) and density. The higher the density p the
smaller the footprint A of each particle: A o< 1/p.

Jendersie et al. [6] used an additional data structure to query the expected
number of photons (an estimate of E[Y]). Further, their method VCM* applied the
estimate in a different way than shown here. However, there are several problems
with an approach that uses a dedicated data structure: noise within the estimator
itself, discretization artifacts, falsely counting photons from different paths into
E[Y], and, finally, scalability problems for large scenes. We present a new, more
direct heuristic in the following.

2.1 An Approximate Solution

The most difficult question is, “What are the quantities V and F of a path?” A path
consists of multiple Monte Carlo sampling events and one connection or merge event.
In the case where the sampling densities p and the target function f are proportional,
the ratio f/p, which is calculated in a Monte Carlo integrator, is constant for any
sample and thus the variance of the estimator is zero [14, Section 2.2]. If p and
f are almost proportional, the variance of a Monte Carlo sampler is close to zero:
V=0.

In importance sampling, we choose sampling probability density functions (PDFs)
p proportional to the BSDF, but our target function is the BSDF multiplied by the
incoming radiance. Mathematically, we can divide this product into two subpro-
blems by using Equation 2. Consider the example of direct lighting: We have the
incoming radiance as the expected value of one random variable with zero vari-
ance (E[Y] = L;, V[Y] = 0) from the deterministic direct light computation and
the sampled view sub-path with F[X] = 1 (by the design of the pinhole camera
model) and V[X] = e (because of jittering in a pixel). The final variance is then
E[Y]?V[X] = L;e, which can be large, even if the sampler is close to the BSDF (or
camera model, in this case).

The same applies to longer paths. Each of the two sub-paths contains multiple
Monte Carlo sampling events, whose variance can be approximated with a small .
To approximate the incoming radiance and importance, we need a density per square
meter and steradian for each sub-path. Alternatively, we can also compute the
inverse of a density—the footprints A[X] and A[Y]. See Figure 3. Conceptually,
the footprint of a path is the projection of a pixel or a photon onto some surface
after some number of bounces.

Assuming we can compute this footprint A and that the samplers have small
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In the second line we replaced €2 with zero, under the assumption that this third
term is dominated by the other two. The ¢ in front of the other terms cancels out
naturally. Finally, we obtain an approximation of the optimal effective reuse factor
n if we can provide the footprint of each sub-path.

2.2 Estimating the Footprint

For our application, the most important thing about the footprint is to capture
events that change the density noticeably. Rough surfaces cause one such event,
which means that it is essential to include the BSDF in the computation.

Estimates were researched previously and used for antialiasing [5] as well as
adaptive reconstruction kernels [2]. To estimate the size of a projected pixel, Igehy
introduced ray differentials [5]. These are capable of estimating the anisotropic
footprint after multiple specular interactions, but they lack any handling of rough
BSDFs. Suykens et al. [12] introduced a heuristic treatment of BSDFs to Igehy’s
ray differentials, calling them path differentials. However, their approach requires
an arbitrary scale parameter that is hard to determine. Schjgth et al. [11] explored
what they call photon differentials, which are essentially ray differentials used for
photons. Again, a treatment of BSDFs is missing and only specular bounces are
handled. The most convenient solution so far is 5D covariance tracing from Belcour
et al. [2], which contains the first proper handling of BSDFs, but is expensive to
compute and store.

Inspired by covariance matrices, we developed a simplified heuristic. Since we
are interested in only the area of the footprint and not in its anisotropic shape, it
suffices to store and update two scalar values: the searched area A and a solid angle
Q, which is used to derive the change of the area. Like in covariance tracing, we
use convolutions to model the change of the footprint by interaction events.

A heuristic similar to ours was used by Bekaert et al. [1, Equation 7] to estimate
the kernel size for a photon mapping event. The difference to our heuristic is that
Bekeart et al. used only the previous PDF to update A. We additionally introduce
the cumulative solid angle €2 that is based on all previous PDFs.

Beginning on any point in a source area, the next path segment will have a
footprint of its own. The segment footprint can be computed, assuming the traced
segment is a cone with solid angle 2. A convolution is required to combine any
source position with the target area. It is performed by adding the square root of
the segment footprint and the source area and squaring their sum again. This is
depicted in Figure 4 on the right, assuming a circular footprint (note that 7 cancels
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Figure 4: Our footprint heuristic. Due to BSDF scattering the solid angle grows with
each interaction (221 > Qo). The footprint size depends on the previous area as
well as Qd? from scattering. The combination of the two areas is achieved by a
convolution (right).

out in the final result). The same result is obtained if we convolve two squares or
any other regular polygon. So, the next question is, how to obtain the two areas?

The source area is one of the following:
e The area of the light source for the first vertex on a light path.
e The area of the sensor in realistic camera models.
e A projection of the incoming area toward the outgoing direction.

The third option applies to all intermediate vertices. Tests have shown that
simply using Ayyy = Ajn resulted in the best MIS weight. The alternative, to divide
the area by the incoming cosine and to multiply by the outgoing cosine (i.e., using
real projections), turned out to be slower and to have lower quality. The simple copy
is reasonable because for our application the footprint should always be growing in
diffuse scattering events. Using the previous area guarantees a monotonic function.

Next, we need an estimate of the footprint of a single path segment. This is
given by the directional sampler’s density p used in any of the events (light sources,
cameras, and intermediate vertices). The sampling density of a direction has the
unit sr~!. Inverting it gives us a solid angle 2 = 1/p of the sample. Similar to
ray differentials, the previous angular variance must be considered. Therefore, we
apply a convolution of the solid angles, which gives

o= leﬁ) 5)

Finally, the incoming area at the new vertex can be computed with

A= (Vac o) )

where Qd? is the area of a spherical cap with solid angle Q at the distance d, i.e.,
the footprint from the scattering on the last path segment. This is also shown in
the left of Figure 4.

So far, the footprint assumes that all paths start at the same source. If there
are multiple light sources (or cameras), a photon (or importon) is emitted with a



probability of pg < 1. This leads to an increase of the area, and the final footprint
of sub-path X becomes
A x

Al = Po.x

(7)

The newly derived footprint heuristic in this section has to be used with care. It
is based on geometrical observations and lacks any kind of curvature-based changes
or anisotropy, which are worth exploring in the future. So far, this heuristic focuses
mainly on the parts that are required by our variance estimation. Therefore, it
complements the previous ray differentials approach, but it does not replace it.
Our heuristic would fail if used for antialiasing or adaptive photon mapping.

Another difficulty is the generalization to volume transport. To begin, it seems
straightforward to use Equation 5 for scattering events, too. However, it would be
necessary to track the spread along the ray direction, depending on the density of
the medium. That is, it is necessary to track a volume instead of the area A.

3 Implementation Impacts

Having an estimate for the footprint area of each sub-path in a merge, we can use
Equation 4 to estimate the proper multiplier n for the MIS-weight. To accomplish
this, we store two float values vQ and VA per vertex. The direct use of these
square root values avoids the repeated square root in Equations 5 and 6. Further,
we found that dividing by ,/p may lead to severe numerical problems by quickly
exceeding the range of float or double precision for €2j,. Therefore, we introduced an
€ = 1x1072 into the quotient. Additionally, Equation 4 can be reordered to obtain
a more robust solution. The final computed values in the implementation are

VO = O (8a)
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In Equation 8c we added an artificial constant ¢ to the exponent. Similar to
the exponents in the power heuristic which amplify a decision, this increases the
differentiation between the sub-path estimates. We found that using ¢ = 0.5 impro-
ved the results for rough surfaces and remained almost the same for other events.
Therefore, we use this artificial modification in all following experiments.

3.1 Performance Consequences

Unfortunately, the sub-paths must be iterated completely for each MIS-weight com-
putation to obtain the sum of all other events. In the usual weight computation
this can be optimized by storing partial sums for the sub-paths. This optimization
is possible only because the path probabilities are pure products that share a lot



Figure 5: The full renderings associated with the zoomed images in Figure 6.

of terms [10, p. 1015ff]. With the sums in ny, this optimization is not possible
anymore, leading to a loss of performance. Compared to a fast standard imple-
mentation with constant cost, the cost with our heuristic becomes linear in path
length. In practical tests this resulted in a loss of 0.3%-3%, depending on the scene.
The impact is higher if the scene is simple (low tracing and low material evaluation
cost) or the paths are long. For more realistic complex scenes, the impact is often
below 1%.

Since the fast implementation stores a different set of values per vertex, VCM
and our OVCM require the same amount of memory.

4 Results

As shown in the previous section, our new heuristic is simple to implement and
has better performance and lower memory consumption than the previous solution
VCM* [6]. Nonetheless, it is equally capable of avoiding the overestimated merge
importance. Figures 5 and 6 show a convergence comparison of five scenes rende-
red with different methods. In Figure 5 the full renderings are given for reference.
Figure 6 shows the square root of the sample variance over a high number of itera-
tions for different algorithms. In this visualization darker is better. A black image
would reveal a perfect estimator with zero variance. Since the variance often scales
with the brightness of the image, the standard deviation images look like contrast
enhanced versions of the rendering itself.

In all cases VCM* and OVCM perform similarly. Both of them are superior to
BPT or VCM. However, they are still not optimal, which becomes noticeable in a
direct comparison. Different surfaces are darker in either of the two approaches.
An optimal solution would have the lowest variance everywhere. Since these diffe-
rences are barely visible, the average standard deviations give a better comparison:
According to these numbers, VCM* and OVCM are equally good on average.

There is also room for improvement. Equation 3 formulates the optimal solution.
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Figure 6: Here we show closeups of the standard deviation o (darker is better) of the full
renderings in Figure 5 over a high number of iterations (10k-65k). The average
sample standard deviation for the entire image is given by &.



Our proposed heuristic completely removes all variances V' and approximates the
expected values E with another heuristic, which, for example, neglects the curvature
or texture changes in the footprint area. By improving the estimates of V and F,
we expect that the artificial ¢ = 0.5 from Equation 8c will become redundant and
that the heuristic will be closer to the optimum.
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