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Hello everybody and wellcome to my talk about microfacet-based
regularization.



Challenge: Complex Light Paths

Path Tracing 1000 spp Reference (VCM) 155k spp

Path Tracing (PT) is widely used because of its simplicity
Even more complex algorithms like Vertex Connection and
Merging (VCM) cannot handle highly glossy paths well
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The challenge to solve is that of hard to sample light paths. In modern
scenes many different materials are used. For example, the
specular-diffuse-specular paths, which we see in the dial of the watch,
lead to problems in many renderers. Beyond that paths with only glossy
and specular materials will still have a high variance in expensive
methods like vertex connection and merging. Even after as many as
155000 samples we can still see noise in the vcm renderering.
Thus, our goal is to reduce the variance in any method – especially in the
cheaper methods like path tracing.



BSDF Regularization as Solution

Sharp peaks in the Bidirectional Scattering Distribution Function
(BSDF) of a material cause the problems
Blurring the BSDF should help
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So, sharp peaks in the Bidirectional Scattering Distribution Function of a
material cause the problems. Therefore, smoothing the BSDF should
help.
And it does as these two images show. Both are rendered with path
tracing using 1000 spp where the right one uses the regularization
strategy which I will explain in the following.



Regularization of Specular Events

specular

Path Space Regularization for Holistic and Robust Light Transport
Kaplanyan and Dachsbacher [KD13]

Improving Robustness of Monte-Carlo Global Illumination with
Directional Regularization
Bouchard et al. [BIOP13]
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Kaplanyan and Dachsbacher introduced the concept of light path
regularization to handle specular events.
The idea is to accept any connection which is within a small cone around
the actual reflection direction.
Bouchard et al. used regularized and non-regularized samplers at the
same time and let a MIS heuristics decide which to use.



Regularization of Glossy Events
Virtual merge strategy:

If connecting, create a random sample of the current BSDF
Check if BSDF within cone

– Discard if not
– If yes, multiply the sample value with the solid angle of the cone

Virtual Merge BPT 1000spp Reference
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The same idea can be used for arbitrary reflectance models which I call
the virtual merge strategy. We can think of it as a sampling event which
is accepted iff the random sample comes close enough to the target point
of the connection.
While having sharp, but enlarged highligths this method has a high
variance. The reason is the additional random sampling we need.
To avoid the random decision we would need to compute a closed form
integral of the BSDF over the cone. This however, is not possible for
many models.



Regularization of Glossy Events

rough

shiny ρ

ρ̂

In connections

shiny

shiny

ρ

ρ̂

In merges

Changing roughness α of a microfacet model in connections and
merges
Non-regularized BSDF during random walk!
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Alternatively, we can control the roughness in microfacet models, which
is often parametrized by α.
If we do, a connection or a merge on a smooth surface can have non-zero
contributions around the real scattering directions. Here, ρ is the BSDF
as it should be and ρ̂ is the regularized variant with an increased
roughness.
Note, that we do not change the BSDFs in random walks. Doing so
would only increase bias and variance as I will explain later.



How to Control the Amount of Smoothness?

We want to invert max(ρ(α̂)) = τ for α̂
Closed form not possible in general
Instead we search an invertible bound ρ̄

– Basically ρ̄ ∝ 1/πα2

– Bound is not strict

−1 0 1 θh

Original BSDF ρ(α)

Regularized BSDF ρ(α̂)
τ
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To control the amount of smoothness, I introduced a threshold prameter
τ for the maximum value of a BSDF. Since the maximum value of a
normalized function has a proportional influence on the upper limit of
variance, this is a logic choice.
So, we search the parameter α for which tau will be the maximum value
of the BSDF. This requires an inversion of the BSDF which is in general
not possible in a closed form. Since we cannot invert the BSDF directly
we use an invertible bound instead. The bound derived in the paper is
basically proportional to 1 by pi alpha square.
However, the bound is not strict when using the v-cavity shadow model.
At grazing angles the BSDF always becomes infinite independent of
alpha.



Comparison: Bidirectional PT 1000spp

Top: No regularization
Bottom: Virtual Merge Roughness-based reg. Reference
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Here, we see the results of roughness based regularization in a
bidirectional path tracer. The variance is lower than it is without
regularization or with the virtual merge strategy. Instead, highlights get
smoothed a lot. This is a problem which we will face later in this
presentation.



Corrected MIS Weights
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The next problem we need to solve is that the MIS weights must reflect
the change we made to the BSDF.



Correct MIS Weights
Independent of the method an unmodified MIS weight will fail

Unmodified (invalid) MIS Correct MIS
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Independent of the regularizaton method the unmodified MIS from any
rendering algorithm will fail, as we see here on the left. The result is not
only more noisy, but it is also too bright. On the right we can see results
using the same sample set with a corrected weighting scheme.



Correct MIS Weights

The probability to find a path did not change!
Our approach changes the measurement contribution function f

f = . . . G(xi−1,xi)ρ(xi, αi)G(xi,xi+1) . . .

Each connection or merge changes f at a different point i by
exchanging a single α
Reevaluated the derivation of the balance heuristic [Vea97]

⇒ wi = ni(1/Îi)∑
k nk(1/Îk)

not nipi∑
k nkpk

Implementation possible through a small modification of p
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First note that we did not change the sampling of the path and therefore
the path probability did not change. So, why do we need to change the
MIS?
Our approach changes the measurement contribution function small f . It
consists of a number of geometric transport terms and the BSDFs. Each
connection or merge changes f at a different position xi by exchanging a
single alpha. This means that f differs between samplers and is not
constant anymore.
We reevaluated the derivation of the balance heuristic which shows that
we need to use the sample values Îi and Îk instead the probabilities.
However, it is equivalent to modify the probabilities to minimize the
implementation impact on existing renderers. For details please have a
look in the paper.



Variance and Bias
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Having a working basic implementation we can focus on the error which
will arise.



Variance Considerations
How much does BSDF regularization reduce the variance?

Each sampler consists of a series of sampling events ρ/p and a
central connection or merge term C

V

[∏
i

ρi
pi
· C
]

ρ0
p0

ρk−1
pk−1 ρ̂k cos θk d

ρ̂k+1 cos θk+1
ρk+2
pk+2

ρ`
p`

C
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The question I want to answer next is: How much does BSDF
regularization reduce the variance.
Each sampler consists of a series of sampling events and some other
terms which are summarized in C.



Variance Considerations

Product can be decomposed
V [XY ] = E[X]2V [Y ] + E[Y ]2V [X] + V [X]V [Y ]
Term for sampling part

V

[∏
i

ρi
pi

]
≈ 0 E

[∏
i

ρi
pi

]
=
∏
i

ci

Most importance sampler have a very good fit to the BSDF
– Lambert: perfect V = 0
– Specular: perfect V = 0
– Microfacet: very good [Hd14]

Variance is not directly caused in the sampling part
Clamping or smoothing ρ/p will not reduce variance
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The product variance can be decomposed using a basic property of the
variance. First, we observe that only little variance comes from the
sampling itself.
Most importance sampler have a very good fit. We are able to perfectly
sample Lambertian diffuse and specular surfaces without variance in this
part of the estimator. Also, there is a sufficient good sampler for the
microfacet models which was invented by Heitz and d’Eon.
Variance is not directly caused in the sampling part. Therefore, clamping
or smoothing the sampling throughputs will not reduce the variance
unless the material sampling routine is bad.



Variance Considerations
Variance originates in the remaining central term C

V

[
ρ̂k cos θk cos θk+1ρ̂k+1

d2

]
� 0

and V
[
ρ̂k
πr2

]
� 0.

The variance is large, if the terms vary greatly over the footprints
of the two sub-paths
Footprint = distribution of sub-path end points
⇒ Strong scattering makes a high variance likelier
Roughing ρ→ ρ̂ decreases the variation of the terms
All variance beyond the variation of ρ cannot be removed through
regularization – regardless of the method
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The point where the variance originates is in the remaining terms of
connections and merges. The variance is large, if the terms vary greatly
over the footprints of the two sub-paths
That is, if a direction is scattered completely random, but any point
which is hit afterwards has the same brightness, there is still no variance.
Hence, diffuse sampling does not introduce variance by itself, but it
increases the footprint of the path. The larger the spread of this end
points the liklier it is that the above terms will introduce variance.
Now, smoothing the BSDF decreases the variation of the central terms
and consequently reduce the variance for any possible footprint
distribution.
However, all variance beyond that, for example from the cosine or the
distance terms or from sampling itself, cannot be removed through
regularization. This is the case for any BSDF-based approach, not only
our proposed solution.



Intermediate Results

PT 16k spp Regularized PT 16k spp
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Let us look at some first results. Here we see a path tracer with 16000
sampler per pixel. In the non-regularized image on the left there are
neither caustics nor SDS paths. The right image looks good, but has
over-blurry highlights which could be avoided.



Bias Reduction: Path Diffusion

Recap: Large footprint ⇒ larger chance for variance
Almost deterministic paths ⇒ less blurring required
Modify τ with the tangential standard deviation at vertex k

τ ′ = τ

σ^,k

Simplified 5D covariance tracing [BSS∗13] to compute σ^.
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Which brings us to the first bias reduction heuristic.
From the previous variance analysis we know that large footprints cause
larger variances. On the other hand, almost deterministic paths have a
small footprint and thus less blurring is required. In these situations we
can increase the threshold to decrease the bias of regularization.
As a solution we modify the threashold by dividing it with the tangential
standard deviation of incoming directions at vertex k. We calculate this
standard deviation with a simplified form of the 5D covariance tracing by
Belcour et al.



Bias Reduction: Path Diffusion in BPT
BPT with 16k spp without regularization (left), with regularization
(center) and with path diffusion heuristic (right)

Success: the highlight (and other near specular paths) are sharper
Problem: Caustic is blurred more (correctly assumes that the
connection to the light has high variance ⇒ strong regularization)
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Let us see how it works in practice. This time we have a bidirectional
path tracer which is capable of rendering caustics.
Enabling regluarization will add the missing SDS path, but also blurs the
caustics and highlights.
The path diffusion heuristic successfully reduces the blurryness of
highlights.
Unfortunately, it also increases the blurryness of the caustic, because
after the diffuse reflection on the ground the next events will have a high
angular standard deviation. That means, the diffusion heuristic correctly
assumes that, for example the connection to the light, requires strong
regularization to reduce the variance. However, it would not have been
necessary to regularize any of the samplers.



Bias Reduction: Sampler Quality

If there is a good sampler, other samplers do not need to be
regularized at all
Sampler Quality

q = min
k

(
ρ̄k · ρ̄k+1︸ ︷︷ ︸

Bound on connection term

· (dpath/dk)2
)

dpath =
∑

di

shiny
shiny

d0 d1
d2

d3
d4

Johannes Jendersie and Thorsten Grosch Microfacet Regularization
19

Notes

So, we introduce another heuristic – the sampler quality. If there is a
good sampler we can disable regularization for all other samplers on the
same path.
To assess the quality of the best sampler on the path we take the
minimum over the bound terms of connections.
And we multiply with the squared relative path length to get a measure
of the shortness of a connection.



Bias Reduction: Sampler Quality in BPT

τ ′ =
{
τ if q ≥ τ2

∞ otherwise

Non-adaptive Sampler quality Path Diffusion
Sampler quality
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If there is a sampler with a high quality, which has a small value q, we set
the threshold to infinity to disable regularization. Since the bound on the
previous slide contains two BSDF bounds it makes sense to compare q to
the squared threshold which we apply on a per BSDF basis.
In the images we can see that the sampler quality heuristic successfully
preserves the caustic. On the right we can also see that a combination of
both heuristics reduces bias quite successfully.



Results and Outlook
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Let us come to a conclusion.



Results

BSDF regularization can turn (almost) impossible paths into
unlikely ones
Variance can be reduced but never guaranteed

– Reason: other terms stay unchanged
MIS weight must be adapted, because regularization changes f
Heuristics help to avoid bias
Opposed to clamping, our approach keeps most of the energy

– Microfacet models lose energy due to missing multiple scattering
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BSDF regularization can turn (almost) impossible paths into unlikely
ones.
Variance can be reduced but never guaranteed, because other terms
which contribute variance stay unchanged.
And finally, we can reduce the most of the unnecessary bias with two
heuristics.
Opposed to clamping, increasing roughness keeps most of the energy.
Why most? Well, if not explicitly compensated, microfacet models lose
energy due to missing multiple scattering.



Equal time 1h

PT (1015 / 1008 spp) BPT (541 / 523 spp) VCM (487 / 493 spp)
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Here, we see regularzation applied in different rendering algorithms. As
shown before, path tracing and bidirectional path tracing miss some
important effects. Indeed, all three regularized methods lead to very
similar results. Only, the caustics from regularization are more blurry
than that without and also contain more noise.
This is because regularization only turns almost impossible into unlikely
paths, while other sampling methods, like merges, can find the same
paths very well.



Future Work

Guided sampling ⇒ More samples close to
the contributing direction

– Product Importance Sampling [HEV∗16]
– Practical Path Guiding [MGN17]

Improved Connection Samplers ⇒
Promising variance reduction

– Probabilistic Connections for Bidirectional
Path Tracing [PRDD15]

– Matrix Bidirectional Path Tracing [CBH∗18]

Control Variates ⇒ better virtual merges

Questions?

rough

shiny

rough

shiny
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Problem: Discontinuity of Decisions

A small change of τ or the path length may change the
decision

Problem is intrinsic

– Let τ2 = 100 and q = 100.1
– Assume the best sampler (with q = 100.1)

cannot be regularized
– All other samplers have qk � q
– At least on other sampler must be

regularized extremely to be ≤ τ2

Smoothstep can reduce the problem, but an arbitrary slope
must be set
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Unfortunately, the sampler quality heuristic can cause temporal
incoherent decisions. A small change of the threshold or the path length
can toggle the decision.
This problem is not only caused by the step function. Rather, it is
intrinsic to the problem of guaranteing one good sampler. For example let
τ2 be 100 and the best sampler have q = 100.1. Now, this best sampler
has two Lambertian diffuse vertices and cannot be regularized. So, we
must regularize one of the other samplers which have much more variance
in the beginning. Thus, in the moment where the threshold is failed by a
tiny amount we introduce a huge bias in one sampler to compensate that.
Especially, this is not a problem of our week variance estimation. Even if
we would know the exact variance of each sampler the situation stays the
same. To guarantee a low variance sampler with the tool of BSDF
regularization will always cause this discontinuity.
We experimented with different smoothstep functions, but those always
failed in one or the other situation so we used the simplest possible
function here. The problem with smoothstep functions is that one must
define an additional parameter to stir the rate of change. A flat transition
will cause blurred caustics and a steep one will have more temporal
inconsistency.



True Variance?

Double integral over the two footprints
Approximate: Footprint area times pdf bound
Bhatia-Davis bound on pdfs: V ≤ (M − µ)(µ−m)
Weaker Popoviciu bound: V < 1

4 (M −m)
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Computing α

We want to invert ρ = τ for α
Closed form not possible in general
Instead we search an invertible bound ρ̄

Reflection [TS67] ρ̄r(α) =
1

4πα2 Ḡ(α)

Refraction [WMLT07] ρ̄t(α) =
max(ηi, ηt)2

πα2(ηi − ηt)2 Ḡ(α)

with Ḡ(α) =

1 V-cavity
4/α2 Smith, GGX
4π/α2 Smith, Beckmann or Cosine

Bound is not strict for V-cavity

Johannes Jendersie and Thorsten Grosch Microfacet Regularization
27

Notes

This search for alpha requires an inversion of the BSDF which is in
general not possible in a closed form. Since we cannot invert the BSDF
directly we use an invertible bound instead. The bound derived in the
paper looks like this.
However, the bound is not strict when using the v-cavity shadow model.
At grazing angles the BSDF always becomes infinite independent of
alpha.



MIS Weights for Estimators

Original derivation by Veach [Vea97]:

F =
m∑

i=1

1
ni

ni∑
j=1

wi(xj)Îi(xj)

V [F ] =

(∫
Ω

m∑
i=1

w2
i (x)
ni

Îi(x)2p∗
i (x) dµ(x)

)
−

(
m∑

i=1

1
ni
µ2

i

)

⇒ wi =
ni(1/Îi)∑
k
nk(1/Îk)

not
nip

∗
i∑

k
nkp

∗
k

Common simplification: f is the same for all estimators Îi = f/p∗
i

⇒ can be canceled
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To find the correct solution we restart with the derivation of the balance
heuristic. We estimate a Monte Carlo integral F over samples Ii with
weights w. As shown in Veach’s PHD thesis F has a variance which looks
this term. By minimizing the left of the two terms through optimizing w
one obtains the balance heuristic using the sample values directly and not
the more known form.
Usually, this can be simplified, because each sample has the form: path
measurment function f divided by the path probability p∗. Therefore, f
can be canceled out and we get the form on the right side. However, for
regularization f changes for different estimators and cannot be removed.



Why Regularization with Standard MIS is Biased

Two specular surfaces ⇒ ρ = p = 0 but ρ̂ > 0
MIS weight uses p = 0 for all other samplers ⇒ w = 1

⇒ Each sampler does the same ⇒ ∀wi = 1 which leads to an overestimation by a factor
of the number of path segments
Same is true to a lesser degree for glossy events
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Equal time 1h

PT (970 / 941 spp) BPT (647 / 625 spp) VCM (432 / 433 spp)
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Here is yet another scene with complex light paths. Again, all three
regularized variants produce similar but different noisy results.
Summarizing, I would prefer the more expensive sampling algorithms,
where regularization still helps to find near specular paths. This increases
the fidelity of specular objects like this glass sphere or the dragon on the
previous slide.
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