
A Meta Format for Anything

Structured Raw Meta Format

Johannes Jendersie
September 23, 2013

Abstract

Structured Raw a minimal meta format which stores binary information and can be used in many different
ways. Like Json files this format stores its own specification so everybody should be able to understand the
contents of a file by just looking at it. Sraw is capable of storing additional meta information to specify
complex formats for models,... as well as packed binary data. Furthermore it is easy to change formats later
without endanger the files compatibility.

Contents

1 Introduction 1

2 Specification 1

3 Example Interface 2

1 Introduction

I like the feeling of Json files. You have data? Name
it and write it down. You want to load it? Open it in a
text editor and look how the data is named and what
is given. What I don’t like is that it takes more space
and must be parsed on read. Storing large arrays is
inefficient and might be easier.

So I came up with an own binary format specifi-
cation which can cover both things. Of course you
cannot look at it in a text editor since it is binary but
a fast dump should be easy enough and will discover
a sufficient amount of information.

In my opinion the main policies and ideas to
achieve the targets are:

• Everything needs an identifier

• The format is hierarchical

• Everything has the same structure (no special
cases)

• As few overhead as possible

• Large file support (64Bit)

• Iteration without reading the data should be pos-
sible

2 Specification

In the following grammatic things in capital letters
are non-terminals and everything else terminals.
Square brackets [] surround optional or conditional
included data. {#∗} I will use as symbol for type-
casted array data. Numbers for sizes are given in

bytes. Strings has to be saved in UTF8. Every
elementary data type must be saved as little endian.

FILE DATA

DATA TYPE IDENTIFIER NELEMS
[SIZE*] {#∗}

TYPE CODE ELEM TYPE

IDENTIFIER STRING8

CODE 0x0 sizeof next NELEMS is 1 |
0x1 sizeof next NELEMS is 2 |
0x2 sizeof next NELEMS is 4 |
0x3 sizeof next NELEMS is 8 |

ELEM TYPE 0x0 DATA |
0x1 STRING8 |
0x2 STRING16 |
0x3 STRING32 |
0x4 STRING64 |
0x5 bit |
0x6 int8 |
0x7 uint8 |
0x8 int16 |
0x9 uint16 |
0xa int32 |
0xb uint32 |
0xc int64 |
0xd uint64 |
0xe float |
0xf double

NELEMS uint8, uint16, uint32 or uint64
depending on CODE flag

SIZE uint64

STRING8 uint8** {#uint8}
STRING16 uint16** {#uint8}
STRING32 uint32** {#uint8}
STRING64 uint64** {#uint8}

* The size is given for DATA and STRING element
types. It is the data block size until the next
data block. It can be used to skip everything
after NELEMS/SIZE to the beginning of the next

DATA on the same level. This might be useful for
faster iteration (e.g. dump of identifiers). For all
types except DATA, STRING and bit the size can
be computed as sizeof(Type) * NELEMS. For bit
type the formula is ceil(NELEMS/8).

** The length of the string is given in advance

3 Example Interface

// Access elementary data
int i = (int)SomeNode [”ScreenWidth”] ;

// Stab l e access with a de f au l t va lue i f data
// i s not found .
f loat f = SomeNode [”Speed”] . GetFloat (1 . 618 f) ;

// Array access in both var iants again
a [3] = (f loat) SomeArray [3] ;
a [4] = SomeArray [4] . GetFloat (1 . 618 f) ;

// Hierarch ica l
Root [”Config ”] [”Device ”] [”Width”] . GetInt (1024) ;

// Write access (bu i l d from nodes)
Root .Add(”Config ” , SomeNode) ;
// Write access (add elementary [array] data)
SomeNode .Add(” Ind i c e s ” , UINT16 , 3141) ;

// Direct read/wri te access (i f e x i s t i n g)
void∗ pData = SomeNode . GetData () ;

2

	 Introduction
	 Specification
	 Example Interface

