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Figure 1: A scene with glass spheres of varying roughness illuminated by four point lights (placed in highly glossy, faceted cylinders
producing striped caustics). Additionally, an area light is used in the background. This scene, having a lot of complex light paths, demonstrates
that our heuristic produces less variance than previous methods, robustly. The darkened (-2EV) closeups demonstrate the HDR nature of
noise pixels in the original VCM technique.

Abstract
Vertex connection and merging (VCM) is one of the most robust light transport simulation algorithms developed so far. It
combines bidirectional path tracing with photon mapping using multiple importance sampling (MIS). However, there are scene
setups where the current weight computation is not optimal. If different merge events on a single path have roughly the same
likelihood to be found, but different photon densities, this leads to high variance samples.
We show how to improve the heuristic for density estimation events to overcome this issue by including the photon density
into the MIS computation. This leads to a faster convergence in VCM and related techniques. The proposed change is easy to
implement and is orthogonal to other improvements of the algorithm.

CCS Concepts
•Computing methodologies → Ray tracing; •Mathematics of computing → Sequential Monte Carlo methods;

1. Introduction

In recent years, with stronger hardware, Monte Carlo light transport
simulation got more and more attention in production rendering.
The scenes become ever more complex with respect to geometry
and materials. The latter leads to an increasing number of complex
light situations where one integration technique may fail and anot-
her may succeed.

One such technique, Bidirectional Path Tracing (BPT) [VG95,
LW93], connects paths from the light sources and the observer.
All different possibilities to create a certain path are weighted ba-

sed on their path probabilities as described in Section 3. BPT can
handle caustics (via light tracing) and mirrors/glass objects (via im-
portance tracing) well. However, it has severe problems with SDS
(specular-diffuse-specular) paths which cannot be sampled by any
of the connection strategies.

Photon Mapping [Jen96] finds SDS paths well, introducing a
small bias, but is difficult to combine with bidirectional path tra-
cing. Georgiev et al. [GKDS12] and Hashisuka et al. [HPJ12]
both derived the same unified weight function for photon mapping
which is compatible with BPT.
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Figure 2: An example for path length three with simple diffuse
bounces and a point light source (50spp). VCM weights both possi-
ble merges (1,2) with roughly the same weight. Our approach pre-
fers connection paths and the merge at 1.

While the VCM heuristic is correct for single path merges with-
out reuse, it fails for some cases once we merge with multiple light
paths. For an example see Figure 2, in which VCM has an even
higher variance than BPT. This shows us that at least one merge
with an actual higher variance than the connection paths is now
overestimated in its importance. More specific, this happens for the
merge at vertex 2 in the schematic sketch. Since the variance of the
merge at vertex 2 is mainly caused by the view sub-path, increasing
the photon count will not decrease the variance by the number of
photons. This means that increasing the path reuse will not decrease
the variance linearly at all merge points. However, in VCM both
alternatives have roughly the same probability (by construction of
the example) and are weighted equally. The balance heuristic in
VCM multiplies the total number of photons with the probability
for all merges which causes an overestimation of some merge-path
probabilities.

We propose a new heuristic in Section 5 which includes the pho-
ton density to find a more robust solution which shifts the mer-
ges towards the viewer. The difference to the previous weighting
in [GKDS12, HPJ12] is a change in the photon gathering accep-
tance probability pacc, only. This allows an easy integration in ex-
isting VCM renderers and related techniques like [ŠOHK16].

2. Related Work

As explained, we base our work on Veach’s foundation for BPT
[Vea97] and the extension to include photon mapping in [GKDS12]
and [HPJ12]. The original Photon Mapping [Jen96] gathers pho-
tons from a search data structure within a small radius around the
current hit point to compute the local illumination. A problem with
this approach is its bias. It blurs light according to the query radius
and may even produce light bleeding artifacts. Progressive Photon
Mapping [HOJ08] solves this problem by reducing the query radius
over time. To accomplish that, a statistics per path-end-point is re-
corded such that the number of photons in the gathering event can
be kept constant. To track the statistics only a single path per pixel
is used which also results in aliasing. Stochastic Progressive Pho-
ton Mapping (SPPM) [HJ09] uses new view-paths every iteration

and shares the statistics within a pixel. It allows a broader range of
effects like depth of field and is able to avoid aliasing. Knaus and
Zwicker [KZ11] showed that a single global radius, which decre-
ases over the iterations, is sufficient for convergence. We use their
approach in the photon mapping part of our implementation.

Besides random connections (BPT) and merging (SPPM), anot-
her class of samplers exists. Markov Chain Monte Carlo (MCMC),
also introduced by Veach [VG97], explores the path space by con-
ditionally accepting path mutations. In [ŠOHK16] MCMC is com-
bined with VCM. This method should benefit from our new heuris-
tic, too.

Another related technique is Unbiased Photon Gathering (UPG)
[QSH∗15] which uses a random trial process to determine the bias
of a photon gathering event in VCM. They modify the merge accep-
tance probability pacc, like our method, but with a different ob-
jective. It is still possible for UPG to have a high variance (e.g. in
Figure 2). On the other hand, our method does not force a bias re-
duction. We propose a variant of our modification (VCM+) which
penalizes bias to some degree, but which cannot provide the gua-
rantees of UPG. It is possible to combine both modifications to get
our robustness and UPG’s unbiasedness.

A method to estimate an error bound of merge events is given by
Hachisuka et al. [HJJ10]. They apply the derived bound to adapti-
vely stop the rendering after reaching a sufficient small error confi-
dently. Similarly, Kaplanyan and Dachsbacher [KD13] use an error
bound to adaptively set the radius of a merge event. Both target to
reduce the error (bias+variance) of a given radiance estimate. We
show that, in VCM-like techniques, it is also of high importance to
select the merge points correctly, to avoid high variance cases. It is
still possible to apply adaptive radii or rendering stop criteria for all
of the merges on a path to reduce the error.

Our method solely reduces the variance by choosing the sampler
more robustly. It still benefits from other variance reduction techni-
ques like Adjoint driven Russian Roulette and Splitting [VK16] and
guidance methods [HEV∗16,MGN17]. All three techniques require
additional data for the spatial and angular varying adjoint quanti-
ties (light and importance). We also use an additional density map
which could be combined with the guidance structures to reduce
the memory and performance overhead in a combined method.

3. Multiple Importance Sampling Reviewed

Multiple importance sampling (MIS) is a general framework in the
context of Monte Carlo integration. It weights samples, drawn from
different probability distributions p, to get a low variance combina-
tion. The chosen heuristic can have a large impact on the variance
as shown in the survey [EMLB17] and Veach’s thesis [Vea97]. The
general form used in light transport algorithms is

wi =
(ni pi)

β

∑k(nk pk)β
, (1)

where the weight wi for sample i depends on the probabilities of all
sampling techniques pk and the numbers nk of samples drawn from
that distributions. β can be used to amplify the choice of certain
techniques. Using β = 1 is called the balance heuristic which we
use in this work. In all cases, the weights wi sum up to 1.
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3.1. MIS in Bidirectional Techniques

In BPT the probabilities p from Eq. (1) for the different path sam-
pling strategies are defined as

pC,i = p(x1) ·
i−1

∏
j=1

p(x j→ x j+1) ·
`−1

∏
j=i+1

p(x j← x j+1) · p(x`). (2)

x1
x2

xi x`−1

xi+1 x`

The probability of a path consists of the probabilities of the two
sub-paths. The full path has ` vertices from which `− i vertices
belong to the light sub-path. −→p (x`) is the probability to sample the
light source which is not used in the unidirectional path tracing case
i = `. The view sub-path has i≥ 1 vertices. Here, usual implemen-
tations do not support a random hit of the camera (i.e. i = 0) and
for a single camera p(x1) = 1 is set. All different sampling alterna-
tives for the path have the same length `, but differ in the partition
position i of the connection vertex.

The probabilities of individual segments in the random walk are
computed with respect to the area measure

p(x j→ x j+1) =
−→p (x j)|cosθ j→ j+1|
‖x j− x j+1‖2 ,

where θ j→ j+1 is the angle between normal and incident direction
at vertex x j+1 and −→p (x j) is the sampling PDF used to sample
the excident direction. The result is a probability density per unit
area, i.e. the chance to hit this surface point using the given sam-
pler. The probability in the reversed direction p(x j ← x j+1) is de-
fined analogously with replaced directions and indices. Note that
−→p (x j) 6=←−p (x j) in general.

3.2. Extension for Photon Mapping

In photon mapping, additional paths are found by performing a
search in the local neighborhood of the end point of one of the
sub-paths (merge event).

x1
x2 xi

x`−1

xi+1x̂i
x`

Unfortunately, these paths have one additional vertex and are not
comparable to the connection-based paths directly. A solution
was proposed by Georgiev et al. [GKDS12] and Hachisuka et al.
[HPJ12] at the same time: Instead of the probability p(x̂i ← xi+1)
with unit m−2, the unitless probability for a merge event pacc is
used.

pacc(xi) =
∫
A

p(xi← xi+1)dx (3)

≈ |A|p(x̂i← xi+1) = πr2 p(x̂i← xi+1)

is the integral over the surface patch at the merge event. Its ap-
proximation uses only one sample of p(xi← xi+1), i.e. the known
segment probability, and the area of a disc with the user-specified
query radius r. According to [GKDS12] this approximation con-
verges to the true result if r is decreased over time and works well
in practice.

S

Figure 3: Examples of paths (red) which become identical (yellow)
through a merge by setting x̂i := xi. Left: Direct light. Middle: A
specular bounce behaves equal to direct light. Right: Total number
of nΦ = 10 emitted photons from which k = 7 reached the gathering
region. The gathered photons correspond to independent path sets,
where only m = 3 belong to the direct light sub-path.

By using Eq. (3) we obtain the final path probability for merge
paths

pM,i = pC,i ·πr2 · p(x̂i← xi+1) (4)

This probability is correct for a single light sub-path. However, the
true strength of VCM lies in its path reuse (see [GKDS12] for an
example). If we reuse a high number of photons nΦ, the current
solution is to multiply pM,i with nΦ in the context of Eq. (1). This
scalar multiplication is applied to each merge event equally, which
causes the invalid decisions as described in the introduction.

4. Probability of Merge Paths with Respect to Reuse

By using nΦ · pM in the balance heuristic Eq. (1) the likeliest sam-
pler should be preferred. However, there are scenes for which even
plane BPT results in a lower variance for some paths (consider the
example of Figure 2). Seemingly, a merge path with a higher vari-
ance than one of the connection paths is chosen in this case. Thus,
the effective reuse of paths must be overestimated.

Without formal introduction let f be the path measurement con-
tribution function [Vea97, p. 222] which is deterministic for a path
given all its vertices. Each of two or more merge events on the same
path are computing a Monte-Carlo sample f/p∗M,i of the same and
constant quantity f , where p∗M,i = ci pM,i includes the unknown fac-
tor ci ∈ [1,nΦ] for the reuse advantage. Without path reuse these
merge events will either happen or not and by setting ci = 1 we
have the required probability for these samples.

If nΦ photons are sent and reused the behavior will change. A
single merge can now find many similar light sub-paths. Figure
3 gives examples for which multiple paths (red) are identical af-
ter merging. It also shows that this effect is not limited to direct
lighting. Longer paths can still have multiple identical sub-paths,
although they diverged up to the query area. This applies to non-
specular bounces in a similar way.

To find the appropriate factor ci, let us begin with the contribu-
tion to a pixel’s radiance estimate, computed by a merge event:

W (x1)

p(x1)

i−1

∏
h=2

ρ(xh)

p(xh)
·

k

∑
j=1

[
ρ j(xi)

πr2 ·

(
` j−1

∏
h=i+1

ρ(xh, j)

p(xh, j)

)
·

Le(x`, j)
p(x`, j)

]
(5)

where Le is the emitted radiance at the light source, W is the sensor
response, ρ(xh) the reflectance (BSDF) at the intermediate vertices
and k the number of photons found in the merge region.
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x1

x2
xi

x`−1,{ j1, j2}

xi+1,{ j1, j2}

x̂i,{ j1, j2}

ki = 5
mi = 2

x`

In equation (5) the k light sub-paths may be different or identical
paths. Let m̃i ∈ [0,nΦ] be the expected number of equivalent paths
which are found in the merge at vertex i as described above (only
diverging up to the merge radius). Note that m̃i is not necessarily
an integral number, rather it is the average of observed equivalent
paths mi over an infinite number of iterations. Since all these paths
are treated as identical from the merge we can set them equal and
replace the sum over these paths by a product

Mi =
W (x1)

p(x1)
·

(
i−1

∏
h=2

ρ(xh)

p(xh)

)
· m̃i ·

ρ(xi)

πr2 ·

(
`−1

∏
h=i+1

ρ(xh)

p(xh)

)
· Le(x`)

p(x`)
.

We know that Mi is an estimate of f/p∗M,i and M j = f/p∗M, j for
a different merge vertex j in the same way. By dividing the two
equations we have

f/p∗M,i

f/p∗M, j
=

Mi

M j

⇔
p∗M, j

p∗M,i
=

W (x1) · m̃i ·∏`−1
h=2 ρ(xh) ·Le(x`)

W (x1) · m̃ j ·∏`−1
h=2 ρ(xh) ·Le(x`)

·
pM, j

pM,i

⇔
p∗M, j

p∗M,i
=

m̃i · pM, j

m̃ j · pM,i
=

c j · pM, j

ci · pM,i

⇔ m̃i

m̃ j
=

c j

ci
.

In the second line we rearranged the terms using the known pM,i
from Eq. (4). Most of the terms are identical for both paths and
cancel out in the third line. As a result we obtain ci ∝ 1/m̃i as the
searched weight.

How is this connected with the variance of the random walk in
the view sub-path? If using a good importance sampler close to
the BSDF, the variance of the sampling is almost zero. Therefore,
the increase in variance primarily originates in the distribution of
incoming radiance, which depends on the density of photons. Thus
we can use the numbers m̃i to derive a new factor ci ∈ [1,nΦ] instead
of using ci = nΦ as in the original VCM.

5. A New Improved Heuristic

In practice we did one simplification to arrive at a feasible solution.
Instead of using the expected number of equal paths m̃i we use the
average number of all photons k̃i > m̃i found in the merge region,
because m̃i is much harder to compute. As an intermediate result
we obtain the heuristic for VCM+

c+i =
nΦ

k̃i
(6)

which already models the shift of merges towards the viewer, but
lacks normalization when comparing to connections.

The overestimation of m̃i by using k̃i is the main reason why
there are situations for which the original VCM is better than
VCM+. Examples are shown in Figure 6.

(a) (b)

Figure 4: Nearest point sampling (a) and a custom 23 filter (b)
applied to the density map after 50 iterations. The scene is that
from Figure 2 but with unrestricted path length.

We found experimentally that dividing by the average of 1/k̃i
over all possible merges along the path gives a more robust solu-
tion. This normalization restores the weight between connection
and merge paths to that of VCM while the shift between merges
remains. It thus decreases the effect of photons from other paths.

The final weight we use for VCM∗ is

c∗i =
nΦ

k̃i
·

(
1

`−2

`−1

∑
j=2

1
k̃ j

)−1

, (7)

for which the k̃ j along the path are obtained from an additional data
structure described in the next section.

5.1. The Density Map (DM)

The overall goal of the density map is to deliver queries of k̃i fast
for any position x. Since it is used to improve the MIS heuristic
only, we can accept biased results from the density map itself.

It is possible to use the already existing photon map to find the
number of merges as an approximation to the integral. However,
this has two disadvantages: performance and variance of the MIS
weight computation. Dependent on the type of the photon map this
comes with a different performance penalty. Our implementation
uses a hash grid including all photons (collisions are resolved using
linked lists as in [JRBG17]). This leads to a query time ofO(k) for
k being the number of photons in the hash-cell. Alternatively, if a
stochastic hash grid [HJ10] is used, the query time is O(1), but in
this case the renderer variance increases due to stochastic collision
handling. We therefore introduce the independent density map and
stick to the non-stochastic version of a photon map.

With respect to the second disadvantage, a dedicated data struc-
ture allows us to decrease the variance in the weight computation by
accumulating the count over time. Other than for photons this does
not increase memory requirements. Accumulation leads to a con-
vergence of the DM which even allows to disable the insertion of
new photons after some iterations (we used 50 in our experiments).
Afterwards, the samples of k̃i are deterministic and the requirement
for an unbiased MIS [Vea97] holds.
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Figure 5: Robustness of VCM* over varying BSDFs. The negative impact of the merge overestimation in VCM (top row) applies even for
very smooth surfaces. Our VCM* solves this problem over a wide range of parameters and paths. Only merges on the outside of the cylinder
are over-penalized, because the DM leaks photons from the inside as visible in Figure 4.

To implement the DM we use, again, a hash grid, where we sim-
ply count the number of collisions in each cell instead of adding
data entries. Figure 4 visualizes the content of the DM after 50
iterations. The filtered version uses the 8 neighbors also used in
bilinear filtering, but ignores samples for which the count is zero.
I.e. the sum of all counts multiplied with a weight is divided by
the sum of weights for cells with a count greater zero. This is im-
portant, because we try to integrate over a surface, but use cells
from a volume. Consequently, there are always empty cells which
must be ignored. For the weight we used wc = e−‖x−xc‖ as a radial
base function dependent on the distance between cell center xc and
sampling position x.

Sampling the DM yields the number of photons q integrated over
the cell region r2

c over all iterations nit. To convert this into the
number of photons inside the query area πr2 we must compute

k̃ = q ·πr2/(r2
c ·nit).

The cell area r2
c is an approximation of the true area of geometry in

this cell. It holds for axis aligned planar surfaces and is an approx-
imation otherwise.

One remaining issue is that the photon count in a cell q can be
zero in low density regions. This would cause a division by zero in
equations (6) and (7). On the other hand the true average of pho-
tons cannot be zero in regions with valid transport paths. Thus, we

introduce the regularization q′ = max(q,1/nit) over the iterations.
For a low average region the expected value is one photon in 1/q
iterations. So, q′ models the expected observable count.

6. Results

Validity: While we made several simplifications – most of all using
the too big number of photons k̃i – VCM* (using Eq. (7)) is superior
to VCM in all tested scenes. Figure 5 demonstrates the robustness
over different glossy paths while Figure 6 and the supplemental
show a broad range of different scenes. Thus, decreasing the ex-
pected effect of path reuse by the connected photon density impro-
ves the robustness of VCM-like algorithms.

Quality: Besides the constructed examples (Teaser 1, Figure 2)
which naturally converge faster, we also tested the convergence for
different scenes shown in Figure 6. A more complete visual compa-
rison is given in the supplemental. The plots on the right side show
the convergence for the first 1024 iterations with respect to various
metrics:

RMSE SRRMSE SSIM√
1
N ∑

N
i (xi− ri)2

√
1
N ∑

N
i

[
xi−ri

(xi+ri)/2

]2 (2µxiµri+C1)(2σxri+C2)
(µ2

xi+µ2
ri+C1)(σ2

xi+σ2
ri+C2)

Here, xi and ri are the ith-pixel value of the image and the re-
ference image and µ,σ are local statistics at each pixel. For more
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Figure 6: Convergence plots and equal time example images for a subset of scenes. The markers denote the iteration/error of the shown
images. Due to equal time comparison the images are from different iterations. Uncropped image series and more scenes can be found in the
supplemental material.
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details on structured similarity (SSIM) and the constant values C1
and C2 please refer to [WBSS04]. For the reference images we used
VCM* with over 12000 iterations (4h-12h).

The Root Mean Squared Error (RMSE) is often noisy due to high
variance specular paths and makes a comparison between the VCM
variants difficult. It shows that BPT clearly has a higher variance for
most of the scenes, but even fails to detect the missing SDS paths
in the MIRRORBALLS scene.

The two other plots show more perception-based measures:
Symmetric Relative RMSE (SRRMSE) which weights over- and
under-estimations the same and SSIM which was explicitly desig-
ned as a perception-based measure.

In almost all cases VCM* is at least as good, but often better,
than standard VCM. There is an exception in the BATHROOM scene
where SSIM shows an increased error on the right side. Our variant
VCM* prefers merges on the infacing roller blind sides instead of
the outfacing ones. Due to light-bleeding within the merge radius
these have a higher bias. Both methods are still consistent and will
converge to the same result.

In some scenes (BUNNYDUCK and RING) results are slightly
worse than for the original VCM. This happens, because using k̃i
in these scenes is a significant mis-evaluation of the required quan-
tity. In the RING scene the bright caustic and the direct light both
contribute many photons while being totally different paths. In the
BUNNYDUCK scene direct light from the point light and the area
light overlay in a similar way.

Comparing VCM+ to the other methods, it mixes characteristics
of VCM* and BPT. In scenes where VCM fails, VCM+ is more
robust (SPHERES, Supplemental: VEACH, DOUBLEMERGE, DRA-
GON). However, it has a higher variance due to over-penalizing
merges. This can be an advantage, if the error mainly depends on
bias (e.g. RING scene).

Performance: For the hash grid we allocated 16 M integer coun-
ters which resulted in only 64 MB additional memory requirement.

The increase in computation time is between 15% and 20% with
respect to the total rendering time. The influence is smaller in more
complex scenes, because tracing costs in those scenes is higher.
Also, implementing a lock-free hash grid would roughly half the
cost. We experimented with a variant, which increased computation
time by only 5% to 9%, but had several artifacts on its own.

7. Conclusions

We have shown that current multiple importance sampling for
VCM and similar techniques is not optimal with respect to vari-
ance. It may overestimate the importance of some merge events
leading to well visible noise. We incorporated the photon density
to the path probability to solve this problem. Our new heuristic le-
ads to a more robust version of VCM producing better or equally
good results than the previous version.

7.1. Future Work

One problem of our method is the requirement of an additional
data structure. However, if combined with one of the guidance met-
hods (e.g. [VK16,HEV∗16,MGN17]) the density could be gathered

from the existing information. Also, it could be possible to reduce
the query times for the density by perfect spatial hashing [LH06].

An improvement to the reliability and quality can be expected
if m̃i instead of k̃i could be evaluated. This could be done by in-
creasing the dimensionality of the hash grid. Using the union of
all path vertices (i.e. 3 dimenisions per vertex) would separate all
paths which diverge more than the cell size in any vertex.

Another avenue is to find a different analytic description which
directly uses the view sub-path probability to decide about the va-
riance reduction of reuse at each of its vertices.

Finally, a combination with UPG [QSH∗15] would be interes-
ting as both modifications target different problems of the merge
events. The combined result would be unbiased and more robust at
the same time.
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[VK16] VORBA J., KŘIVÁNEK J.: Adjoint-Driven Russian Roulette
and Splitting in Light Transport Simulation. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 1–11. URL: http://doi.acm.org/
10.1145/2897824.2925912. 2, 7

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image Quality Assessment: from Error Visibility to Structural Similarity.
IEEE Transactions on Image Processing (TIP) 13, 4 (2004), 600–612.
URL: https://doi.org/10.1109/TIP.2003.819861. 7

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

http://doi.acm.org/10.1145/2366145.2366210
http://doi.acm.org/10.1145/2366145.2366210
http://dl.acm.org/citation.cfm?id=275458.275461
http://dl.acm.org/citation.cfm?id=275458.275461
http://diglib.eg.org/handle/10.2312/vmv20171269
http://diglib.eg.org/handle/10.2312/vmv20171269
http://doi.acm.org/10.1145/2451236.2451242
http://doi.acm.org/10.1145/2451236.2451242
http://doi.acm.org/10.1145/1966394.1966404
http://doi.acm.org/10.1145/1966394.1966404
http://doi.acm.org/10.1145/1141911.1141926
https://lirias.kuleuven.be/handle/123456789/132773
https://lirias.kuleuven.be/handle/123456789/132773
http://onlinelibrary.wiley.com/doi/10.1111/cgf.13227/full
http://onlinelibrary.wiley.com/doi/10.1111/cgf.13227/full
http://www.pbrt.org/
http://doi.acm.org/10.1145/2816795.2818119
http://doi.acm.org/10.1145/2816795.2818119
http://doi.acm.org/10.1145/2980179.2982411
http://graphics.stanford.edu/papers/veach_thesis/
http://graphics.stanford.edu/papers/veach_thesis/
https://github.com/PetrVevoda/smallupbp/tree/master/scenes/mirrorballs
https://github.com/PetrVevoda/smallupbp/tree/master/scenes/mirrorballs
http://dx.doi.org/10.1007/978-3-642-87825-1_11
http://dx.doi.org/10.1007/978-3-642-87825-1_11
http://dx.doi.org/10.1145/258734.258775
http://dx.doi.org/10.1145/258734.258775
http://doi.acm.org/10.1145/2897824.2925912
http://doi.acm.org/10.1145/2897824.2925912
https://doi.org/10.1109/TIP.2003.819861

