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Spherical Function Representations: a Practical
Survey

Johannes Jendersie
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Figure 1. Examples of spherical function representations. Top row: Polar map, cube map,
HEALPix, hemispherical projection, icosahedral map and Isocube map. Bottom row: Octahe-
dral map, wavelet tree, spherical harmonic, Zernike’s basis, a center distribution for mixture
models and an anisotropic cosine lobe.

Abstract

In many simulation processes, storing spherical information is necessary. Particu-
larly, we were interested which representation is the best to store light and surface
descriptions in light transport simulation. This survey summarizes many different
spherical mapping methods, polynomial bases and mixture models to store spherical
information. For each we give practical implementation hints and show advantages
as well as disadvantages. We found that mixture models outperform all other repre-
sentations and evaluate three different approaches to fit them. Finally, we measure the
compression performance of all models against different data sets.

1. Introduction

The need to store functions in a spherical domain appears in a broad range of topics.
Among them are the storage of geographic data, simulations of earth systems like
the climate and the description of physical properties. They are also frequently used
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in computer graphics for light transport simulations. These require information like
incident or excident light, normal distributions or reflection distributions. Latter is not
only a function of a single direction but a function of two directions.

In any case there is no natural mapping from the sphere to a 2D plane and therefore
it is difficult to map a spherical function into memory. We analyze the existing models
to store such functions and evaluate how they can be fitted fast and stable. Thereby,
we focus on extreme compression down to a few bytes mainly for the application in
computer graphics.

Traditionally, cube maps (see Sec. 3.2) and spherical harmonics (see Sec. 4.2) are
used for algorithms in graphics. Cube maps are used for environment maps and reflec-
tion probes [Greene 1986] with medium to high resolutions. Spherical harmonics are
used whenever many heavily compressed functions must be stored. The most known
application ares Precomputed Radiance Transfer (PRT) algorithms [Sloan et al. 2002],
irradiance [Greger et al. 1998] and radiance caches [Krivanek et al. 2005; Vardis et al.
2014] where light distributions are approximated. They are also used for cheap sky
lighting instead of (cube) environment maps, as integration can be performed by a
single dot product. Another use case are normal distributions for the modeling of
reflection distributions as in [Crassin et al. 2011; Heitz et al. 2015]. A related survey
[Cigolle et al. 2014] details the compression of a single normal. This involves a 2D
parametrization of the direction vector, which is very similar to storing distributions in
a grid using the same parametrization. We were interested in the difference between
the most used forms and how far alternatives can yield even better results.

A large section of this document will dive into (Gaussian) mixture models. Those
would perform better in many of the mentioned applications, but are inherently dif-
ficult to fit to a target function. Only few parameters can be determined by linear
optimization. All others must be found by non-linear optimization via Levenberg-
Marquardt [Levenberg 1944; Marquardt 1963] or similar algorithms. Another option
is the iterative Expectation Maximization (EM) algorithm [Dempster et al. 1977] and
a third the mixture reduction techniques [Runnalls 2007; Crouse et al. 2011; Ardeshiri
et al. 2015]. We compare all three against each other in the hope that they will find a
way into new application fields.

Another very important usage is in the form of general Bidirectional Reflection
and Scattering Distribution Functions (BRDFs and BSDFs). There are many analytic
models for specific surfaces for which Montes et al. [2012] give a good overview.
However, we are also interested in general compressing methods to approximate the
reflectance of more complex (macroscopic) objects. Those BRDFs were briefly sur-
veyed by Rusinkiewicz [1997] and Kurt et al. [2009], but both do not analyze the
performance of the models. We show two approaches how to use the spherical func-
tions in the bidirectional domain, but do not explore the vast number of resulting
combinations. It can be expected that the properties of the spherical functions are
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inherited from the two-dimensional domain.
We analyze function representations on the sphere S2 and the hemisphere with re-

spect to the accuracy, the implementation effort and the time complexity of the fitting.
Our review includes several different grid models, wavelet compression, spherical
polynomial bases, lobe mixture models and spherical radial basis functions. Further,
we compare different fitting methods in case of mixture models. Our contributions
are:

• An overview of many different bases for spherical functions

• A test data set for normal distribution functions

• A generalization of the H Basis from Habel and Wimmer [2010], as well as
modifications to Makhotkin’s basis [1996]

• Golden Ratio low-discrepancy series on the sphere with a better distribution
than a Hammersley point set.

• New parameter estimations for the EM algorithm [Dempster et al. 1977] to fit
numerous isotropic and anisotropic kernels.

• A fitting algorithm for mixture models which combines Runnalls’ reduction
technique [2007] and EM

2. Evaluation Setup

In general a good representation is one which approximates a given function with as
little as possible cost with respect to memory and/or runtime. Unfortunately, there
is no natural mapping from surface of the sphere into memory. Thus, a mapping can
either be area preserving (equal area) or angle preserving (conformal). For the general
application of function representation the equal area property is of higher importance.
It guarantees that single data values represent the same solid angle and information is
uniformly preserved. However, in some cases the data might have a specific structure
which benefits from a locally increased information density. Further, there are non-
mapping based representations like polynomial bases and mixture models for which
properties like equal area or conformal do not apply. To compare all those models, we
analyze different error metrics over sets of different data. More specific properties like
area preservation are given in the respective sections of the models where meaningful.

2.1. Test Data Base

Evaluating the performance of different models statistically requires a broad range of
data sets. We used two different types of input data which are likely use cases for the
usage of spherical functions in computer graphics.
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Apple Armadillo Asian Dragon Bunny

Coin Grass Patch Skeleton Hand Horse

Lamp Lucy Rock Teapot

Figure 2. The Normal Distribution Function (NDF) test data set. The renderings show the
objects from which the distributions were created. Below, the NDFs are previewed in polar
coordinates. The actual data is stored in cube maps and not shown here.

Our first two data sets are collections of environment maps (cube maps). Often
hemispherical or spherical functions are used to describe light probes generated from
environment maps. We use 12 LDR maps from Emil Persson (aka Humus) [Persson
] and 12 HDR maps from Paul Debevec [Debevec ] / HDRI [Zaal ]. The resolution of
the cube maps is 6 · 20482 for the LDR and 6 · 2562/6 · 10242 for the HDR set. The

4



Technical report July 13, 2017

sets will be referred as LDRdat and HDRdat respectively.
Our second type of data are normal distribution functions (NDFs). We generated

those distributions from the different 3D models shown in Figure 2. The NDFs are
stored in 6 · 10242 cube maps to match the other data sets in the input format. They
are normalized to yield one over the spherical integral. The generated cube maps are
provided with the supplemental materials. This data set will be referred as NDFdat.

2.2. Error Measurement

For the evaluation of fitting quality we used different error measurement functions.
Our first choice was Root Mean Square Error (RMSE), also known as L2 error. How-
ever, this measurement is not necessarily equal to the perceived error. Discontinuity
artifacts are as bad as a little increased brightness with respect to that error. Therefore,
we also used the Structural Similarity (SSIM) Measure from Wang et al. [2004].

In case of RMSE we sample the error with the set S of directions at pixel centers
of the original data:

rmse(f, f ′) =

√
1

|S|
∑
~s∈S

(f(~s)− f ′(~s))2

where f is the input function and f ′ the fitted result.
The same set is used for the SIM index

ssim(f, f ′) =
1

|S|
∑
s∈S

(2µf (s)µf ′(s) + c1)(2σff ′(s) + c2)

(µ2
f (s) + µ2

f ′(s) + c1)(σ2
f (s) + σ2

f ′(s) + c2)

which requires local mean µ, standard deviation σ and correlation σff ′ to be com-
puted. Therefore, we sample the surrounding of s with directions oi(s) and use a
Gaussian kernel for weighting.

wi(s) = e−(c3 arccos(oi(s)·s))2

µ(s) =

∑N
i=1wif(oi(s))∑N

i=1wi

σ(s) =

√∑N
i=1wi(f(oi(s))− µ(s))2∑N

i=1wi

σff ′(s) =

∑N
i=1wi(f(oi(s))− µf (s))(f ′(oi(s))− µf ′(s))∑N

i=1wi

We used 32 directions oi(s) sampled in a cone of 2 deg total opening angle. For the
constants we took c1 = 0.02, c2 = 0.018 and c3 = 100 for all experiments.

Finally, we introduce Area Deviation to quantify the quality of mapping based
approaches as

A±
[

lim
n→∞

ωmin(n)

ω̄
, lim
n→∞

ωmax(n)

ω̄

]
,
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where ω̄ is the average solid angle (4π/n on the sphere and 2π/n on the hemisphere)
and ωmin/ωmax the minimum and maximum solid angle of the pixels at resolution
rx · ry = n. Since these ratios depend on the resolution, we give the limit value at
infinity. An area preserving mapping has A±[1, 1] and a worst case mapping would
have A±[0,∞]. Where possible we give analytic derived values, otherwise we use
numeric approximations.

2.3. Parametrization

The spherical coordinates for all models are
parametrized after the following convention.
The transformation for a normalized direction
vector (x, y, z) into spherical coordinates (θ
(zenith) and ϕ (azimuth)) and back is:

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ

θ = arccos(z)

ϕ = atan2(y, x)
x

y

z

(x, y, z)

ϕ

θ

2.4. Spherical Integration

At some points in this document functions are integrated over the sphere. We write

∫
Ω
f(ω)dω which is equal to

2π∫
0

θmax∫
0

f(θ, φ) · sin θ dθ dφ.

θmax is either π2 for an integration over the hemisphere or π for the sphere.

3. Grid Based Methods

Grid based mappings transform the angular parametrization into a 2D plane and store
support values at fixed positions. The function is usually reconstructed as piecewise
linear interpolation of support values in the vicinity of the sampling location.

This is opposed to polynomial bases (Section 4) which define polynomials in the
spherical domain and to lobe mixture models (Section 5) which have varying support
locations.

3.1. Polar Coordinate Map

The polar coordinate map is parametrized over the two Euler angles θ and ϕ of the
spherical coordinates of a direction vector.

u =
ϕ

2π
v =

θ

π

6



Technical report July 13, 2017

(a) 12x24 grid (b) Equal area (c) Hemispherical

Figure 3. Polar Coordinate Map

Domains PCM can be used for spherical (θ ∈ [0, π], ϕ ∈ [0, 2π]) and hemispherical
domains (θ ∈ [0, π/2], ϕ ∈ [0, 2π]) by modifying v accordingly. The resolution
of θ can be halfed for hemispherical maps.

Quality The singularities at the poles introduce a strong area deviation of A±
[
0, π/2

]
.

Pixels have different support areas leading to an oversampling in the pole re-
gion. The pixels can be made equal area by using

v =
1

2
sin
(
θ − π

2

)
+

1

2
(1)

before computing the index. However, this results in an higher distortion (shape
deviation) as visible in Figure 3.

Performance Using the same angular spacing in θ and ϕ the resulting map resolu-
tion is 2n × n and 2n × n/2 for spherical and hemispherical map respectively.
A lookup can be performed in O(1) by converting the direction to spherical
coordinates and computing a 2D index from the two angles. See Listing 1.

# get u,v coordinates in [0,1]x[0,1]
polarmap(dir) -> (u,v)

theta = acos(dir.y)
phi = atan2(dir.z, dir.x)
if phi < 0: phi += 2π end
# scale θ : [0, π]→ [0, 1] and ϕ : [0, 2π)→ [0, 1)

u = phi/2π

v = theta/π
end

Listing 1. Polar coordinate map lookup

3.2. Cube Map

The cube map is the most common exchange format for environment maps as it is
simple and provides a comparatively low distortion. It consists of 6 equally sized
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(a) 6x7x7 grid (b) Face indices and coordinate mappings within faces

Figure 4. Cube Map

squares. The mapping is done by a projection onto a surrounding cube such that the
largest value of (x, y, z) becomes ±1 and defines the face f . The two remaining
coordinates define u and v as shown in Figure 4 (b).

There is an interesting extension from Tarini et al. [2004] using multiple cube
maps to create low distortion texture mappings for arbitrary meshes.

Domains The cube map is mostly used for full spherical functions. It is possible to
implement a hemi-cube, but the resulting difference in the face size (one square,
four 2:1 rectangles) introduces an overhead.

Quality Interpolation over edges is an issue leading to discontinuities/seams on edges.
One approach to solve this is to average the pixels on both sides of the edge
[Isidoro and Mitchell 2005], another to warp the texture lookup function [Castaño
2012]. However, most graphics hardware supports seamless sample filters on
its own. The area deviation for cube maps is A±

[
2/
√

3π, 6/π
]
.

Performance The cube map takes 6 × n × n space. A lookup can be performed in
O(1) as in Listing 2.

# get face index f and u,v coordinates
cubemap(dir) -> (f,u,v)

# get 0, 1 or 2 for x, y or z
majorDim = argmax(abs(dir))
# map to [0,5] dependent on sign
f = majorDim * 2 + (dir[majorDim] > 0 ? 1 : 0)
switch majorDim:

case 0: projU = -dir[2]/dir[0] projV = dir[1]/abs(dir[0])
case 1: projU = dir[0]/abs(dir[1]) projV = -dir[2]/dir[1]
case 2: projU = -dir[0]/dir[2] projV = dir[1]/abs(dir[2])

end
# transform [-1,1] to [0,1]
u = projU / 2 + 0.5
v = projV / 2 + 0.5
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end

Listing 2. Cube map lookup

3.3. Hemispherical Projection

(a) 16x16 grid (b) Concentric map-
ping Shirley [1997]

(c) Concentric Lambert
equal area mapping

(d) Elliptical Lambert
equal area mapping

Figure 5. Hemispherical Projection

The simplest mapping from a hemisphere to a disc is the projection by remov-
ing the z component. The mapping introduces distortion towards the horizon and is
wasting 1 − π/4 ≈ 21.5% of the square texture (Figure 5 (a)). The deviation of pixel
sizes is A±[0,∞] and can be reduced by using Lambert equal area mapping for the
hemisphere to the disc:

u =
x√

1 + z

v =
y√

1 + z

z = 1− u2 − v2

x = u
√

1 + z

y = v
√

1 + z.

In computer graphics this mapping is also know as (dual) paraboloid mapping [Hei-
drich and Seidel 1998] which is the application of Lambert equal area mapping for
reflection probes.

However, even with an improved projection the corners of the map are wasted
which can be overcome by another disc to square mapping. Shirley and Chiu [1997]
introduce the concentric map which warps the coordinates in the plane with respect
to the center. The result can be seen in Figure 5 (b) for the simple projection and
in Figure 5 (c) using the Lambert equal area projection. The area deviations are
A±
[
1/2,∞

]
and A±[1, 1] respectively. Listing 3 provides the implementation for the

concentric mapping including the area correction.
In the normal compression survey by Cigolle et al. [2014], an alternative ellip-

tic mapping is used. Semantically it pushes the corners of the square onto the disc
boundary smoothly.
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Disc to square:

t =
√

(2 + u2 − v2)2 − 8u2

u′ =
2u√

2 + u2 − v2 + t

v′ =
2v√

2− u2 + v2 + t

Square to disc:

u = u′
√

1− v′2

2

v = v′
√

1− u′2

2

The mapping is shown in Figure 5 (d) in combination with the Lambert equal area
projection. The elliptical disc to square mapping is not area preserving. Using Lam-
bert equal area projection followed elliptic mapping has an deviation of A±

[
0, 4/π

]
.

Domains While being a hemispherical mapping by definition it can be easily ex-
tended to the sphere by using a second map if z < 0.

Quality Using the pure projection leads to high distortions at the horizon and to
a waste of memory in the corners. Lambert equal area mapping reduces the
distortion but does not solve the problem of unused corners. However, values
are well distributed using the concentric or elliptical mapping.

Performance The map requires a single n×n texture for hemispherical functions and
twice that many for a sphere. A lookup can be performed inO(1) regardless of
the chosen mapping combination.

# Map a hemisphere direction to u,v coordinates.
hemiproj(dir) -> (u,v)

phi = atan2(dir.y, dir.x)
if phi < -π/4: phi += 2π end
# Make concentric rings equally spaced.
# No need to divide by sqrt(1+dir.z)! Simpler in polar coordinates:
r = sqrt(1 - dir.z)
# Transformation from Shirley and Chiu 1997
if phi < π/4: a = r b = phi * r / π * 4
elif phi < 3π/4: b = r a = (π/2 - phi) * r / π * 4
elif phi < 5π/4: a = -r b = (π - phi) * r / π * 4
else b = -r a = (phi - 3π/2) * r / π * 4
end
u = a / 2 + 0.5
v = b / 2 + 0.5

end

Listing 3. Concentric equal area hemisphere map lookup

3.4. Octahedral Maps

Octahedral maps have the simplest mapping of Platonic solids. They were used for
environment maps [Engelhardt and Dachsbacher 2008] and normal vector encoding
[Cigolle et al. 2014] before.
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(a) 16x16 grid (b) Hemispherical
16x16 grid

(c) Mapping from the octahedron to a square
including repeated pixels for interpolation

Figure 6. Octahedral Map Projection

Similar to cube maps directions are projected using Manhatten norm L1 instead
of infinity norm L∞. Then the upper hemisphere is projected to the plane and the
lower one can be unfolded to fill the remaining corners of a square as shown on the
right of Figure 6.

Domains The octahedral map can be used for spheres and hemispheres with slightly
different implementations. For hemispheres the projection must be rotated by
45◦ to fill the square (see Listing 4).

Quality Octahedral maps have a distortion similar to the concentric hemispherical
projection but lack their equal area sized pixel. The area deviation is A±[
1/π, 3

√
3/π
]

in both domains. Seamless interpolation is possible by repeating
pixels along borders by using 180◦ rotations of the same map.

Performance The map requires a single n × n texture for both domains. A lookup
can be performed in O(1). Without a hardware support, which is usually given
for cube maps, this is among the fastest mappings.

# map a direction from the sphere to u,v
octamap(dir) -> (u,v)

l1norm = abs(dir.x) + abs(dir.y) + abs(dir.z)
if dir.z >= 0:

u = dir.x / l1norm
v = dir.y / l1norm

else # warp lower hemisphere
u = (1 - dir.y / l1norm) * (dir.x >= 0 ? 1 : -1)
v = (1 - dir.x / l1norm) * (dir.y >= 0 ? 1 : -1)

end
u = u / 2 + 0.5
v = v / 2 + 0.5

end

# map a direction from the upper hemisphere to u,v
hemioctamap(dir) -> (u,v)

l1norm = (abs(dir.x) + abs(dir.y) + abs(dir.z)) * 2
u = (dir.x - dir.y) / l1norm + 0.5
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v = (dir.x + dir.y) / l1norm + 0.5
end

Listing 4. Octahedral map lookup

3.5. Tetrahedral and Icosahedral Maps

(a) Tesselated tetrahedron (n=16), octahedron (n=8)
and icosahedron (n=4), where n is the number of sub-
divisions.

(b) Alternative mapping of the icosahedron onto 10
squares. This enables hardware interpolation, but suf-
fers from many seams.

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)
x

y

st

(c) Indexing within a triangle to
map triangle vertices to mem-
ory without seams. Barycen-
tric coordinates α and β are
remapped to indices (x,y) and lo-
cal barycentric coordinates (s,t).
Shared data on vertices (red)
and edges (green) is found via
lookup table. The order of inte-
rior vertices (blue) is (n − y −
2) · (n− y − 1) + x− 1.

Figure 7. Triangulated sphere mapping

The tetrahedron and the icosahedron are two more Platonic solids which subdi-
vide the sphere into regular faces. Unlike cube and octahedral maps, coordinates
cannot be projected to a square or rectangle easily. While the tetrahedron net could be
unfolded into a rectangle this is not possible for the icosahedron. Figure 7 (b) shows
that the icosahedron can be mapped to 10 squares, which is similar to the cube map
and octahedral map implementations. While hardware interpolation is possible the
number of seams which require a duplication of data increases.

Therefore, we implemented a triangle mapping by first detecting the face and then
mapping barycentric coordinates onto linear indices. Interpolation within a triangle
is possible using the barycentric coordinates. To interpolate over boundaries our im-
plementation stores data on the vertices of the grid (colored dots in Figure 7 (c)). To
avoid redundancy, knowledge of the neighborhood is incorporated via lookup table
(LUT). The LUTs have a size proportional to the number of primary triangles (4 and
20) and do not depend on tesselation. Vertices on edges need to be iterated in the same
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order in both adjacent triangles. To solve this we introduced a third LUT EDGE_DIR

which simply assigns each edge a unique direction. For details see Listing 6.

Domains Tetrahedral and icosahedral maps can only be used for the spherical do-
main. However, our triangle mapping allows more arbitrary shapes, but since
the size of the LUTs depends on the number of faces it is not reasonable for a
more complex scenario.

Quality The increasing number of faces reduces distortion and area deviation com-
pared to other similar mappings. The icosahedral map has an area deviation of
A±
[
1/2, 1.207

]
There is no gain in using tetrahedral maps (A±[0.061, 3.308]).

Performance The storage cost for the triangle mapping is f ∗ (n2− 1)/2 + v, where
f is the number of faces, v the number of vertices and n the tessellation. On
top of that the LUTs require O(f) space with a small factor. A lookup can be
performed in O(f), because the face must be found first.

# Map an integer grid coordinate x,y to linear memory
# and handle redundant vertices between triangles.
# Thereby n is the number of subdivisions per triangle.
adress(t, x, y) -> i

# Map boundary edges explicitly with LUTs
if x==0 && y==0: i = VERTEX_OFFSETS[t*3+0]
elif x==n: i = VERTEX_OFFSETS[t*3+1]
elif y==n: i = VERTEX_OFFSETS[t*3+2]
elif x==0: i = EDGE_OFFSETS[t*3+0] + EDGE_DIR[t*3+0] ? y-1 : n-y-1
elif y==0: i = EDGE_OFFSETS[t*3+1] + EDGE_DIR[t*3+1] ? x-1 : n-x-1
elif x+y==n: i = EDGE_OFFSETS[t*3+2] + EDGE_DIR[t*3+2] ? x-1 : y-1
else # interior vertex inside triangle

x = x - 1
y = n - y - 2
i = t * (n-2) * (n-1) / 2 + y * (y+1) / 2 + x

end
end

# get a linear interpolated sample from triangulated sphere
trianglemap(dir) -> sample

for t in triangles:
if _,α,β,γ = intersects(dir, t):

x,s = intfrac(α * n)
y,t = intfrac(β * n)
if s > t && x < y: # upper right triangle

return data[adress(t, x+1, y+1)] * (s + t - 1)
+ data[adress(t, x+1, y )] * (1 - t)
+ data[adress(t, x, y+1)] * (1 - s)

else
return data[adress(t, x, y )] * (1 - s - t)

+ data[adress(t, x+1, y )] * s
+ data[adress(t, x, y+1)] * t

end
end

end
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end

Listing 5. Interpolated lookup on triangulated spheres

3.6. HEALPix
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(a) 8x8x12 grid. All pixels
span the same solid angle.

(b) The sphere is partitioned into equatorial and polar zones
at cos θ = ±2/3 and within the equatorial zone by the curves
described by Eq. 2 and 3.

Figure 8. HEALPix mapping

The HEALPix (Hierarchical Equal Area isoLatitude Pixelation) mapping origi-
nates in astronomic applications by the NASA [Gorski et al. 2005]. Its 12 curvilinear
quadrilaterals can be tessellated perfectly into equal area pixels. Because of its low
discrepancy of pixel locations it was also used for environment mapping before [Wan
et al. 2005].

First, the sphere is divided into an equatorial and two polar zones at cos θ = ±2/3,
denoted by the two black horizontal lines in Figure 8 (b). Within the equatorial zone,
the sphere is partitioned by

k = −1

2
+ t+

3

4
cos θ k = 0, 1, 2, 3 (2)

and l = −1

2
+ t− 3

4
cos θ l = 0, 1, 2, 3 (3)

where t = 2ϕ/π and the curves of Eq. 2 and 3 are shown in red and blue respectively.
The fractional parts between the curves map directly onto u and v.

The polar zones are divided into four triangular faces by

k = t k = 0, 1, 2, 3.

The u and v coordinates must be aligned with the parts in the equatorial zone, which
yields

u =
√

3(1− | cos θ|) · t

v = 1−
√

3(1− | cos θ|) · (1− t),
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where u and v are swapped for the northern cap.

Domains HEALPix is designed for the spherical domain. Dividing it into two hemi-
spheres would lead to a mixture of triangle and quad faces.

Quality The map has equal area pixels (A± [1, 1]) regardless of the subdivision at
a comparable low distortion of pixels. Its quadrilateral faces are well suited
for quad-tree subdivisions. Interpolation has the issue of seams between faces.
This can be solved by repeated pixels or a lookup based neighborhood assign-
ment, again.

Performance HEALPix requires f × n× n space and can be looked up in O(1).

# Get the face f and the u, v coordinates matching Figure 8 (b)
healpix(dir) -> (f,u,v)

t = atan2(dir.y, dir.x) * 2 / pi
# equatorial zone?
if abs(dir.z) <= 2.0/3.0:

k,u = intfrac(mod(3.5 + t + 0.75 * dir.z, 4.0))
l,v = intfrac(mod(3.5 + t - 0.75 * dir.z, 4.0))
if k == l: f = 4 + k # = 4 + l -> central quad
elif k == mod(l+3,4): f = 8 + l # southern triangle
else f = k # l==mod(k+3,4) -> northern triangle

else
f,x = intfrac(t)
x = sqrt(3 * (1 - abs(dir.z)))
if dir.y < 0:

f += 8
u = x * t
v = 1 - x * (1 - t)

else
u = 1 - x * (1 - t)
v = x * t

end
end

end

Listing 6. HEALPix lookup

3.7. Isocube

The Isocube is a map inspired by HEALPix [Wan et al. 2007]. It extends the idea such
that hardware interpolation can be used. The trick is a remapping of a direction such
that a lookup in a usual cube map (Section 3.2) gives equal area samples on the sphere.
Figure 9 (b) shows a very similar parametrization as the HEALPix mapping (Figure
8 (b)). Again, the sphere is divided into an equatorial zone between cos θ = ±2/3
and two polar regions. The mapping within the polar zones is very similar to the
concentric mapping of Shirley and Chiu [1997] (Section 3.3).
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y = cos θ

2ϕ/π − 1/2−0.5 3.5

(a) 6x7x7 grid (b) Unfolding in parameter space. (c) Distortion of the cube map
through the remapping.

Figure 9. Isocube Map

The equatorial zone is partitioned by the curves

u =

(
2

π
ϕ+

1

2

)
mod 1

and v =
3

4
y +

1

2
.

Within each of the four triangular faces divided by k
2πϕ, k = 0, 1, 2, 3 the curves are

a =
√

3− 3| cos θ|

and b =
2

π
ϕ · a.

Dependent on k the coordinate (a, b)T must be transformed into (u, v)T with one of
the following matrices Ak.

A0 =

[
1 0

0 2

]
A1 =

[
2 −2

1 0

]
A2 =

[
−1 0

4 −2

]
A3 =

[
−6 2

−1 0

]

Using u, v and z a point on the unit cube can easily be constructed and used as
lookup direction in a cube map. This is demonstrated in Listing 7.

Domains The Isocube is a pure spherical map.

Quality This map has equal area pixels (A±[1, 1]) like HEALPix, but adds distortion
in the polar regions.

Performance The O(1) lookup time is similar to that of HEALPix, but offers the
opportunity of hardware interpolation. The space requirement is the same as
for cube maps (Section 3.2).
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# Remap a direction to a lookup coordinate in a cube map.
# The intermediate results u and v can be used for manual adressing, if
# an additional face f is determined.
isoDirToCubeDir(dir) -> cubeDir

# Compute azimuth angle and convert to [0.5,3.5).
t = 2 / π * atan2(dir.y, dir.x)
if t < -0.5: t += 4
# Equatorial zone?
if abs(dir.z) <= 2.0/3.0:

a = 1
b = t

else
a = sqrt(3 * (1 - abs(dir.z)))
b = t * a

end
# Transform: kind of a rotation around up axis
k = floor(t + 0.5)
[u,v] = A[k] * [a,b]
# Produce cube coordinate
cubeDir = [u, v, clamp(dir.z * 1.5, -1, 1)]

end

Listing 7. Isocube direction remapping

3.8. Spherical Wavelets

λl+1
1

λl+1
3 λl+1

2

λl+1
0

λl1
3

0

2

δl+1
0

δl+1
1

δl+1
2

idx

δl0
δl1
δl2
idx

Stored values:

(a) Icosahedron based
wavelet subdivision.

(b) Haar-Wavelet nomenclature for one subdivision from level l
to l+1. λ values are (averaged) function values, δ are coefficients
of the basis functions. Right: basis functions of H (Eq. 4).

Figure 10. Spherical wavelet subdivision

A wavelet is a basis function with local support in both space and frequency do-
main [Grossmann and Morlet 1984]. Wavelets and scaling functions together repre-
sent a function f at different levels of detail by scaling and translating the basis (multi-
resolution analysis). The wavelet transformation (analysis) is the decomposition of f
into a high frequency part and a low frequency part recursively. The resulting dif-
ference between high-pass and low-pass filtered version is stored into δ coefficients.
Hence, many coefficients are close to zero and may be discarded for lossy compres-
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sion purposes. The reconstruction (synthesis) of the function is done by adding the
differences and low-frequency parts recursively.

To apply the wavelet transformation on a sphere a subdivision scheme with access
to the local neighborhood is required. The easiest way is to use a sphere to rectangle
mapping (Polar coordinates Sec. 3.1, Projections Sec. 3.3 or Octahedral mapping
Sec. 3.4) and perform a standard transformation in the plane. Lalonde [1997] used
this approach for the compression of BRDFs.

Lounsbery et al. [1997] introduced the wavelet transformation on arbitrary meshes
to compress the meshes themselves. Schröder and Sweldens [1995] used a similar ap-
proach based on triangular subdivisions of the sphere to compress spherical functions.
They provides a mathematically framework on abstract index sets and introduce the
lifting method from Sweldens [1998] on the sphere. They tested different setups and
came to the conclusion that storing the data on vertices, not on faces, performs best.
We implemented what they call the lineal lifted wavelet basis and the Haar-Wavelet
basis. Both are based a triangular quad-tree on the faces of an icosahedron.

The Haar-Wavelet is the simplest Wavelet in form of a square-function on the unit
interval. No neighborhood is required for analysis and synthesis. In our implementa-
tion each node in the coefficient (quad-) tree stores three δ values and a single child
index. Thus the overhead of tree indices is small compared to the data. On the top-
most level a single function value λ and a child pointer is stored per face. The four
values in a tessellated triangle are transformed using the Haar-transformation matrix:

H =
1

2


1 1 1 1

1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2


[λl, δl+1

0 , δl+1
1 , δl+1

2 ]T = H · [λl+1
0 , λl+1

1 , λl+1
2 , λl+1

3 ]T . (4)

The inverse transformation during reconstruction is HT , because H forms an or-
thonormal basis. Figure 10 (b) visualizes the quad tree and its indexing scheme.
Further, the basis functions spanned by H are shown.

The lineal basis is implemented similarly. Function values λ and child indices are
stored on the twelve vertices of the icosahedron. Each node stores three δ values, one
on each edge, and a child index. Figure 11 shows the index names used in the follow-
ing formulas. The double indexed m values are only needed if lifting is applied.
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Figure 11. Index set of vertex basis

The linear basis analysis is

λlvi = λl+1
vi (5)

δl+1
mi = λl+1

mi −
1

2
(λl+1
vj + λl+1

vk
) (6)

for i, j, k = 0, 1, 2 ∧ i 6= j 6= k

which could also be expressed by a sparse 6×
6 matrix. Note that this is the transformation
without lifting.

To improve the compression abilities the Wavelet base can be lifted [Schröder
and Sweldens 1995]. This is introduced by an additional transformation of λm values
before applying Equation 6.

λ̃l+1
m0

= λl+1
m0

+
1

4

(
δl+2
m2,0

+ δl+2
m2,2

+ δl+2
m1,1

+ δl+2
m1,0

)
(7a)

λ̃l+1
m1

= λl+1
m1

+
1

4

(
δl+2
m0,1

+ δl+2
m0,0

+ δl+2
m2,2

+ δl+2
m2,1

)
(7b)

λ̃l+1
m2

= λl+1
m2

+
1

4

(
δl+2
m1,2

+ δl+2
m1,1

+ δl+2
m0,0

+ δl+2
m0,2

)
(7c)

Domains The domain can be chosen arbitrary due to a choice of primary triangles.
Alternative to the triangle based implementation, a standard wavelet transfor-
mation is possible on the quad faces of a cube map or HEALPix.

Quality Both implementations have discontinuity artifacts among different tessel-
lated neighbored triangles (T-junctions). It would be possible to track neighbors
in the traversal to solve this problem.

Performance In an adaptive implementation the overhead of tree pointers/indices
wastes some memory. Additionally, our vertex base implementation stores δ
values on mi locations twice if triangles on both sides of the edge are subdi-
vided. Alternatively, the transformation could be done on a regular tessellated
sphere prior to some entropy encoding to solve both problems. However, en-
coding the densely transformed function requires a decoding step before sam-
pling. A lookup can be performed inO(f+l) where f is the number of primary
faces and l the maximum subdivision level.

# Get the index of the child triangle c and the barycentric coordinates of
# the sampling point within this triangle
traverse(α, β, γ) -> (c, αc, βc, γc)

x,αc = intfrac(predecessor(2) * α) # using predecessor(2) ensures x={0,1}
y,βc = intfrac(predecessor(2) * β)
z,γc = intfrac(predecessor(2) * γ)
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c = (1-x) * (1 + (1-y) * (1 + (1-z)))
if c == 3: # center triangle -> invert barycentrics

αc,βc,γc = 1-αc, 1-βc, αc+βc-1
end

haar(dir) -> sample
for t in triangles: # Find the primary triangle.

if _,α,β,γ = intersects(dir, t):
node, sample = t.node, t.λ
while valid(node.idx)

c,α,β,γ = traverse(α,β,γ)
node = nodes[node.idx + c]
# take column c of H for inverse transformation
sample = [sample, node.δ0, node.δ1, node.δ2] * H[][c]

end
return

end end end

linearwavelet(dir) -> sample
for t in triangles: # Find the primary triangle.

if _,α,β,γ = intersects(dir, t):
# load top level data and start recursion
λ0, λ1, λ2 = λ[t.v0], λ[t.v1], λ[t.v2]
node = t.node
while node

c,α,β,γ = traverse(α,β,γ)
# Reconstruct the three values on the edges.
λm0 = node.δ0 + (λ1 + λ2) / 2
λm1 = node.δ1 + (λ0 + λ2) / 2
λm2 = node.δ2 + (λ0 + λ1) / 2
# Optionally invert lifting.
if valid(node.idx]

c0,c1,c2 = nodes[node.idx+0], ..., nodes[node.idx+2]
λm0 -= (c2.δ0 + c2.δ2 + c1.δ1 + c1.δ0) / 4
λm1 -= (c0.δ1 + c0.δ0 + c2.δ2 + c2.δ1) / 4
λm2 -= (c1.δ2 + c1.δ1 + c0.δ0 + c0.δ2) / 4

end
# Select the λ for proceeding with the child.
switch(c):

0: λ0, λ1, λ2 = λ0, λm2, λm1
1: λ0, λ1, λ2 = λm2, λ1, λm0
2: λ0, λ1, λ2 = λm1, λm0, λ2
3: λ0, λ1, λ2 = λm0, λm1, λm2

end
node = nodes[node.idx + c] # invalid index -> null

end
return α * λ0 + β * λ1 + γ * λ2

end end end

Listing 8. Sampling of adaptive Wavelet quad-tree (synthesis)

4. Polynomial Bases

Polynomial bases are projections onto orthogonal basis functions of different fre-
quency. The original function is expressed as a linear combination of basis functions
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b with scalar coefficients c:

f(x) =
∑
i

ci · bi(x). (8)

A function is reconstructible if the frequency of basis b is twice as high as the
highest frequency in f (Nyquist-Shannon sampling theorem [Nyquist 1928; Shannon
1948]). The orthogonality of bases (

∫
bi · bj = 0) allows a fast projection of f into

the basis:
ci(x) =

∫
Ωi

bi(ω) · f(ω)dω, (9)

where Ωi is the domain in which the basis function bi is unequal to zero. All models
in this section have bases with global support. Therefore, the domain Ωi is always the
hemisphere 2πsr or sphere 4πsr.

4.1. Artifacts: Ringing and Smoothing

(a) 3 bands (b) 4 bands (c) 6 bands (d) 8 bands (e) 12 bands (f) input f

Figure 12. Spherical harmonic fit of a function f with two peaks. The integral over all
representations is the same, but images (a)-(e) are scaled by a factor of 5. With more bands,
the ringing is decreased in magnitude and increased in frequency. Further, fewer bands cause
higher smoothing up to the loss of the two peaks as visible in (a).

All polynomial bases suffer from the same artifact, namely ringing. The removal
of high-frequency bands causes an overshooting of function values in lower bands.
I.e. high frequency peaks in f cause high coefficients for some bases which results in
a repetition of the feature over the full sphere with a pattern of the base. An unlimited
number of bands compensates the overshooting with the higher frequency bases.

A common approach to solve this problem is to blur the function in form of win-
dowing in the frequency domain [Sloan 2008]. Therefore, a weight w is applied to
all coefficients based on the band index l they live in. We use Lanczos windowing in
some of the following examples and evaluations:

wLanczos(l) = sin

(
πl

n

)
· n
πl
. (10)

The first band has wLanczos(0) = 1 and the last used band l = n − 1 has a value
slightly greater zero.
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Figure 13. Polynomials of the first four bands of the SH basis. Red and blue shades denote
the sign. The central column shows the zonal harmonics y0l .

4.2. Spherical Harmonics

Spherical harmonics is the most used polynomial basis in computer graphics. It is
used for Precomputed Radiance Transfer [Sloan et al. 2002], sky lights and caches
for local light [Krivanek et al. 2005; Vardis et al. 2014; Jendersie et al. 2016]. Green
[2003] and Sloan [2008] both give a practical introduction to SH in computer graph-
ics. The success of the basis is motivated by the following properties:

• The SH basis is rotational invariant. I.e. rotating f before projection yields the
same as rotating the SH functions themselves. This is not true for any of the
grid based models.

• The projection of one SH onto another is the dot product of their coefficient
vectors:

∑
ai · bi. This makes SH evaluations very fast for a few bands.

• There is no need for a fitting or sampling process. A function can simply be
projected (see below).

The original definition of basis functions is based on complex numbers similar to
the Fourier Transformation and goes back to P.S. Laplace 1782. In computer graphics
only the real-valued fraction is used and bases are denoted with yml . Thereby, l ∈
[0,∞) is the index of the band, with greater l representing higher frequencies, and
m ∈ [−l, l] is an index within the band. Hence, a band has 2l + 1 basis functions
leading to a total of n2 coefficients for an n-band SH. The bases with m = 0 are also
called zonal harmonics. These are isotopic with respect to the up axis as visible in
Figure 13. The basis polynomials are defined by

yml (θ, ϕ) =


√

2K
|m|
l · cos |m|ϕ · P |m|l (cos θ) m > 0

√
2K
|m|
l · sin |m|ϕ · P |m|l (cos θ) m < 0

K0
l · P 0

l (cos θ) m = 0

(11)
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with K being a normalization factor and P being the associated Legendre polynomi-
als:

Km
l =

√
(2l + 1)

4π

(l −m)!

(l +m)!

Pmm (x) = (−1)m(1− x2)m/2
m∏
1

(2m− 1) (12a)

Pmm+1(x) = x(2m+ 1)Pmm (12b)

Pml (x) = x

(
2l − 1

l −m

)
Pml−1 −

(
l +m− 1

l −m

)
Pml−2. (12c)

Equation 12c is used as long as l > m+ 1, then recursion is finished by 12a and 12b.
Thus, each function is defined by l − m + 1 steps, always going up in the pyramid
until reaching the spine.

Domains SH are defined for spherical domain only. When used for hemispherical
functions the second hemisphere must be filled with reasonable values. Using
negative values f(π − θ, φ) = −f(θ, φ) forces half the coefficients to be zero.
All functions with even m+ l are symmetric to the x,z-plane and are canceled
by the choice above

Quality See Section 4.1 to ringing.

Performance Due to global support a lookup takes O(n2) steps with n being the
number of bands.

The code shown in Listing 10 is a general optimized evaluation approach. In
practice it is advisable to use the code generator from Sloan [2013] which unrolls the
recursion and summarizes as much as possible.

evalsh(dir) -> s
s = 0
sinTheta = sqrt((1 - dir.z) * (1 + dir.z)) # sqrt(1-cos2 θ)
sinThetaM = 1 # sinm θ for m=0
# Use addition theoreme for cos|m|ϕ and sin|m|ϕ.
cosPhi = dir.x / sinTheta cosMPhi = cosPhi
sinPhi = dir.y / sinTheta sinMPhi = sinPhi
for m in [0,n-1] # n == number of bands

p_m_m = FACTORIAL[m] * sinThetaM # Eq.(12a)
i = m * (m + 1)
# For zonal harmonics m==0 do not evaluate twice:
if m != 0: s += c[i + m] * p_m_m * cosMPhi * K[i/2 + m]

s += c[i - m] * p_m_m * sinMPhi * K[i/2 + m]
if m < n-1:

p_m1_m = dir.z * (2 * m + 1) * p_m_m # Eq.(12b)
i = (m + 1) * (m + 2)
if m != 0: s += c[i + m] * p_m1_m * cosMPhi * K[i/2 + m]

s += c[i - m] * p_m1_m * sinMPhi * K[i/2 + m]
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for l in [m+2, n-1]:
p_l_m = (dir.z*(2*l-1)*p_m1_m-(l+m-1)*p_m_m)/(l-m) # Eq.(12c)
i = l * (l + 1)
if m != 0: s += c[i + m] * p_l_m * cosMPhi * K[i/2 + m]

s += c[i - m] * p_l_m * sinMPhi * K[i/2 + m]
p_m_m, p_m1_m = p_m1_m, p_l_m

end
end

# Evaluate next power (−1
√

1− x2)m for p m m
sinThetaM *= -sinTheta
# Update angles with addition theorme
nextSinMPhi = sinPhi * cosMPhi + cosPhi * sinMPhi
nextCosMPhi = cosPhi * cosMPhi - sinPhi * sinMPhi
sinMPhi, cosMPhi = nextSinMPhi, nextCosMPhi

end
end

Listing 9. SH evaluation. The same code can be used for projection with the use of c[i±m]
+= ... instead of s += c[i±m] ... K is an array of precomputed normalization constants and
FACTORIAL an array of the product terms from Equation 12a.

4.3. Hemispherical Harmonics
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3

Figure 14. HSH basis functions for the first four bands. Red and blue shades denote the sign.

Hemispherical harmonics are shifted versions of the SH basis. They were defined
by Gautron et al. [2004] with a linear transformation of cos θ in the SH basis. Using
x→ 2x−1 for the input argument of the associated Legendre Polynomials (Equation
12) shifts the south pole to the equator. The result is a new orthogonal base in the
positive hemisphere. All basis polynomials, except the former zonal harmonics, are
zero for θ = π/2. Therefore, the HSH basis can only represent a constant value on the
entire equator. An alternative is theH basis (Section 4.4).

Together with a shift of Pml the normalization constant Km
l must be changed.
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Replacing these two terms in the SH definition (Equation 11) with

P̃ml (x) = Pml (2x− 1)

K̃m
l =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

(13)

gives the basis polynomials hml (θ, ϕ) of HSH basis.

Quality Additional to ringing (Section 4.1) the HSH introduces a strong radial blur
towards grazing angles. In the limit (equator itself) there is only a constant
value independent of ϕ.

Performance Projection and lookup are the same as for SH: O(n2).

The implementation follows that of SH (Listing 10). The only necessary changes
are the use of dir.z ∗ 2− 1 instead of dir.z in all locations.

4.4. H Basis (Generalized)

l�m -3 -2 -1 0 1 2 3
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Figure 15. Polynomials of the first four bands of theH basis. Red and blue shades denote the
sign. The framed bases are from Habel and Wimmer [2010], whereas all others result from
our generalized form.

TheH basis from Habel and Wimmer [2010] is a mixture between SH and HSH.
Habel et al. observed, that the SH basis wastes some information if used for the hemi-
spherical domain and that HSH cannot represent different values on the boundary.
Instead they used the first shifted zonal harmonic ỹ0

1 from HSH basis and the xy-plane
symmetric y±mm from SH basis up to the second band. All other basis functions were
rejected. Therefore, the original H basis is only defined for four (H4 without y±2

2 )
and for six coefficients (H6).

We generalized this idea by shifting all basis functions of the SH basis individ-
ually. The shift sml can be chosen such that the peak of the most z-negative lobe is
lifted to the equator. I.e. now, all lobes are at least partially in the upper hemisphere
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and the lowest lobes intersect the xz-plane in their zenith. For 2 bands this gives H4.
The formerH6 is a subset ofH9 with 3 bands.

The basis polynomials Hm
l (θ, ϕ) are defined as the SH definition (Equation 11)

using

sml =

√
l − |m|

l
(14)

P̂ml (x) = Pml ((1 + s) · x− s)

instead of Pml and using the normalization factor for hemispheres K̃m
l from HSH

basis (Equation 13).
TheH basis is orthogonal forH4 andH6, but looses the orthogonality otherwise.

Functions within a band l remain orthogonal, due to sin and cos being orthogonal, but
bases which share the index m 6= 0 are not (columns in Figure 15). The Zernike base
(Section 4.5) is similar, but retains the orthogonality.

Quality Additional to ringing (Section 4.1) the generalizedH basis is not orthogonal
making it more difficult to fit.

Performance The lookup is the same as for SH: O(n2).

4.5. Zernike’s Basis

l�m -4 -3 -2 -1 0 1 2 3 4
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Figure 16. Polynomials of the first five bands of the Zernike basis. The band structure is
different from that of the other bases as there are only l+ 1 basis functions per band. Red and
blue shades denote the sign.

This basis was introduced by Zernike [1934] in the context of mirror optics anal-
ysis. It uses orthogonal polynomials which are defined on a disc with coordinates
(φ, r), closely related to Jacobi polynomials. It can be extended to the hemisphere
with

r(θ) =
√

2 sin
θ

2
(15)

as done by Koenderink et al. [1996] to represent BRDFs. The resulting basis is again
an orthonormal system as shown by Koenderink.
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The definition looks very similar to that of the SH basis:

Zml (θ, ϕ) =


√

l+1
π cos(|m|ϕ) ·R|m|l (r(θ)) m > 0√
l+1
π sin(|m|ϕ) ·R|m|l (r(θ)) m < 0√
l+1
2π R

0
l (r(θ)) m = 0

Rml (x) =

(l−m)/2∑
k=0

(−1)k(l − k)!

k!
(
l+m

2 − k
)
!
(
l−m

2 − k
)
!
· xl−2k (16)

with two differences. First, it uses different polynomials Rml instead of Legendre
polynomials. The second difference is another band structure, which is best visible
in Figure 16. Each band has l + 1 basis polynomials. Therefore, there are n(n+ 1)/2
basis functions in total, allowing a finer grained control of the number of required
coefficients.

Our normalization factors
√

l+1
π and

√
l+1
2π are inspired by the common SH nor-

malization factor. Koenderink et al. [1996] used a different one, namely
√

2l+1
2 for

all three cases.

Domains Zernike’s basis is defined on the disc, but can be mapped to the hemisphere.

Quality See Section 4.1 to ringing. Other than HSH, this basis can have different
values on its equator and is still orthogonal.

Performance A lookup takes O(n2) steps with n being the number of bands. How-
ever, the constant factor is smaller than for the other polynomial bases allowing
slightly more bands for the same memory and computation requirements.

evalzernike(dir) -> s
s, idx = 0
r = sqrt(1-dir.z) # == sqrt(2) * sin(acos(dir.z) / 2)
phi = atan2(dir.y, dir.x)
# Iterate over m in the outer loop to reduce sin/cos calls.
for m in [0, n-1]:

sinMPhi = sin(m * phi)
cosMPhi = cos(m * phi)
# Enumerate bands which contain bases with index m. /2*2 rounds to
# the next smaller even number. Alternatively use (n-m+1)&-2.
for l in [m, +2, ((n-m+1)/2)*2 + m]:

# Since Rlm and the normalization are equal for two bases m
# and -m they can be factored out.
Rlm_x = 0
for k in [0,(l-m)/2]:

Rlm_x += pow(r, l - 2 * k) * RK[idx++]
end
if m == 0:

s += c[l * l / 2 + l] * Rlm_x
else
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s += (c[(l * l - m) / 2 + l] * sinMPhi
+ c[(l * l + m) / 2 + l] * cosMPhi) * Rlm_x

end
end

end
end

Listing 10. Evaluation of Zernike basis. The array RK contains the fraction from Equation 16
which is independent of x times the normalization factor.

4.6. Makhotkin’s Basis
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Figure 17. Makhotkin basis functions for the first four bands. Red and blue shades denote
the sign. This basis has a severe problem with horizontal values as visible in column 0.

Makhotkin established another hemispherical basis to describe incoming and out-
going radiance on a surface [Makhotkin 1996]. He started with the Jacobi polynomi-
als

Jl(x, 0, 1) =
(−1)n

2nn!(1 + x)

dn

dxn
[
(1 + x)(1− x2)n

]
as orthogonal base. It should be mentioned the Legendre polynomials, used in SH
basis, are another simpler special case of the Jacobi polynomials: Jl(x, 0, 0), without
the two (1 + x) terms. This leads to problems in orthogonality as pointed out below.

In the next step, Makhotkin defined the adjoint Jacobi functions

Jml (x) = (1− x2)m/2
dn

dxn
Jl(x, 0, 1)

which can also be described by the following recursive formulation:

J0
0 (x) =1

Jml (x) =0 if l < m ∧m < 0

Jml (x) =
a1x− 1

a0
Jml−1(x)− a2

a0
Jml−2(x) +

a1

a0
m(1− x2)m/2Jm−1

l−1 (x)
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a0 = (2l − 1)(l + 1) a1 = (2l − 1)(2l + 1) a2 = (l − 1)(2l + 1)

Finally the hemispherical basis is:

Mm
l (θ, ϕ) =

{
C
|m|
l sin(|m|ϕ) · J |m|l (2 cos θ − 1) m > 0

C
|m|
l cos(|m|ϕ) · J |m|l (2 cos θ − 1) m <= 0

Unfortunately, the normalization does not have a known closed form solution. We
required that the square norm equals 1 yielding the following integral formulation:

Cml =

√
1∫ 2π

0

∫ π/2
0

(
Jml (2 cos θ − 1)cos(mϕ)

)2
sin θdθdϕ

=

√
2∫ 2π

0

∫ 1
−1

(
Jml (x)cos(mϕ)

)2 dxdϕ

where the second form results from the substitution of 2 cos θ− 1 with x. For the first
5 bands this gives:

C0
0 =

√
1

2π

C0
1 =

√
2

4π
C1

1 =

√
2

3π

C0
2 =

√
3

6π
C1

2 =

√
3

12π
C2

2 =

√
3

40π

C0
3 =

√
4

8π
C1

3 =

√
4

30π
C2

3 =

√
4

240π
C3

3 =

√
4

1260π

C0
4 =

√
5

10π
C1

4 =

√
5

60π
C2

4 =

√
5

840π
C3

4 =

√
5

10080π
C4

4 =

√
5

72576π

Unfortunately, the basis is only orthogonal with respect to the weight function
1 + x, because the underlying Jacobi polynomials fulfill the condition∫ 1

−1
Jmala

(x)Jmblb
(x)(1 + x)dx = 0 if la 6= lb ∨ma 6= mb

only [Makhotkin 1996]. This is not the case for Legendre polyonomials, which are
orthogonal under the weight function w(x) = 1. However, since all other terms in
M do not depend on x we can orthogonalize the basis by multiplying with

√
1 + x,

yielding

M̃m
l (θ, ϕ) =

{
C
|m|
l sin(|m|ϕ) · J |m|l (2 cos θ − 1) ·

√
2 cos θ m > 0

C
|m|
l cos(|m|ϕ) · J |m|l (2 cos θ − 1) ·

√
2 cos θ m <= 0

.

The modification forces the values on equator to be zero, which is different to all other
bases in this chapter. The newly obtained orthogonal basis performs much better than
the original, as shown in supplemental 1.
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Domains The Makhotkin basis is defined on the hemisphere.

Quality Except ringing (Section 4.1) this basis has severe problems with horizontal
values and is not orthogonal in its original form. Like HSH, the equator can
have only one constant value. We introduced an orthogonalized alternative
which has zero value on its equator.

Performance A lookup is possible inO(n2) steps with n being the number of bands.

5. Mixture Models

A component in our sense is a bell-shaped function on a sphere. A mixture model
combines several of these components as a non-orthogonal base to approximate a
function. The number of degrees of freedom and the used shape for each function
can differ. Most common are Gaussian, Cosine and Beckmann base functions. The
degrees of freedom (DOF) are the center direction of a lobe (2), an isotropic (1) or
anisotropic (3) frequency and the amplitude (1). This gives up to 6 DOF per compo-
nent. From those only the amplitude can be determined using linear optimization. The
remaining DOFs must be found using iterative methods. Thereby, the most difficult
part is to find well defined starting values to avoid local maxima.

The reminder of this section is structured as follows: First, a list of common
radial basis functions is introduced. Then, it is shown how to make any of the given
kernels anisotropic. In Section 5.3 amplitudes are fitted in a least squares sense while
keeping all other parameter fixed. As a first full fitting method we apply the non-
linear solvers Levmar and Ceres and combine them with the linear determination
of amplitudes. Section 5.5 introduces the Expectation Maximization algorithm and
shows the parameter estimation for many of the introduced radial basis functions.
Finally, an iterative approach is described which reduces the number of lobes until
the desired count remains (Section 5.6).

5.1. Spherical Radial Basis Functions (SRBF)

An SRBF is a positive definite function G defined on the geodesic distance between
two points on the m-sphere ~c, ~d ∈ Sm: θ = arccos(~c · ~d). The SRBF is symmetric
(isotropic) with respect to the central axis ~c. A function f can be approximated as

f(~d) ≈
n∑
i=1

wiG(~ci · ~d, λi) (18)

where wk are weights (amplitudes) of single bases, ci are the center directions of
the components and λi their frequency parameter. Often SRBF are used in a context
where only wi are fitted to the function with the remaining parameters fixed upfront.

30



Technical report July 13, 2017

0◦

30◦

60◦

90◦

120◦

150◦

180◦
210◦

240◦

270◦

300◦

330◦
0◦

30◦

60◦

90◦

120◦

150◦

180◦
210◦

240◦

270◦

300◦

330◦
0◦

30◦

60◦

90◦

120◦

150◦

180◦
210◦

240◦

270◦

300◦

330◦

λ = 0.8 λ = 0.5
λ = 0.25 λ = 0.125

λ = 16 λ = 4
λ = 1 λ = 0.25

λ = 0.3 λ = 0.9
λ = 1.8 λ = 6

(a) Abel-Poisson (b) von-Mises-Fisher (c) Beckmann

Figure 18. Examples of SRBF kernels D with scaling to one of the maximum value for
visualization purposes.

Section 5.3 handles this in detail. For varying center and frequency parameters, refer
to Sections 5.4, 5.5 and 5.6.

In the following we give a list of possible functions with different normalization
conditions. The normalization for probability distribution functions D on the sphere
is
∫

ΩD(ω, λ)dω = 1. In a second normalization we require the zenith value to be one
(G(~c · ~d = 1) = 1). This simpler condition is sufficient for some of the fit methods
because multiplications by a scalar which does not depend on the spherical angle are
consumed by wk. In Figure 18 examples are visualized.

D G λ

Beckmann
e−(tan2 θ)/λ2

πλ2 cos3 θ
e−(tan2 θ)/λ2 (0,∞)

GGX
λ2 cos θ

π((λ2 − 1) cos2 θ + 1)2

λ2

((λ2 − 1) cos2 θ + 1)2
(0, 1]

Cosine
λ+ 1

2π
cosλ θ cosλ θ [0,∞)

vMF
λ

2π(eλ − e−λ)
eλ cos θ e−λeλ cos θ (0,∞)

Gaussian A
λ cos θ

π(1− e−λ)
e−λ sin2 θ cos θe−λ sin2 θ [0,∞)

Abel-Poisson
1− λ2

4π(λ2 − 2λ cos θ + 1)3/2

(1− λ)3

(1− 2λ cos θ + λ2)3/2
(0, 1)

The actual Beckmann [Beckmann and Spizzichino 1987] and GGX [Walter et al.
2007] distributions are defined as normal distribution functions with a different nor-
malization condition (

∫
ΩD(ω, λ) cos θdω = 1). We derived the density distributions
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by multiplying with cos θ. In case ofDBeck the maximum is not at θ = 0 for λ >
√

2/3
as visible if Figure 18c. Our simplified GBeck merely inherits the tangents distance
and discards the entire denominator.

The cosine distribution is fairly known as Phong lobe in computer graphics and
often used in reflection models.

The von-Mises-Fisher [Fisher 1953] distribution is one widely used form of a
Gaussian kernel on the sphere. We added a further Gaussian variant with a different
dependency on θ. This Gaussian A kernel is inspired by the Anisotropic-Spherical-
Gaussians [Xu et al. 2013].

Finally, we found the Abel-Poisson distribution in [Freeden et al. 1997] and [Nar-
cowich and Ward 1996] which has some nice properties opposed to other kernels in
the list.

Only the Abel-Poisson and von-Mises-Fisher distributions span the entire sphere.
All others are antipodal symmetric and are usually clamped to the positive hemi-
sphere. I.e. even though not explicitly written the cosine terms must be surrounded
with max(0, cos θ) in those kernels.

For two of the kernels closed form convolutions are given by Narcowich and Ward
[1996]. In case of Abel-Poisson distribution the convolution yields another Abel-
Poisson distribution again. The second one is a convolution of a Gaussian kernel in
the form eλ cos θ. The convolution is possible on the m-sphere, but only shown for the
2-sphere here. For an m-sphere formulation the reader is referred to [Narcowich and
Ward 1996].

GAP ∗HAP(~cg · ~ch, λg, λh) =
(1− λgλh)3

(1− 2λgλh(~cg · ~ch) + (λgλh)2)3/2

GGau ∗HGau(~cg · ~ch, λg, λh) = 4π
sinh

(√
λ2
h + λ2

g + 2λhλg(~cg · ~ch)
)

√
λ2
h + λ2

g + 2λhλg(~cg · ~ch)

5.2. Anisotropic SRBF

(a) D	Cos with α=3, β=20. (b) D	Beck with α=2, β=10. (c)D	GGX with α=2, β=10.

Figure 19. Examples of anisotropic kernels. Each of the functions is shown from two direc-
tions. Note that exponents of the Cosine distribution are greater to achieve a similar shape.
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The SRBF kernels above all used the cosine of the angle θ between distribution
center and the current direction. For anisotropic models the frequency λ must change
according to the azimuth ϕ, too. To incorporate this we use two frequency parameters
α and β in connection with the tangent ~t and the bitangent ~b of the central vector ~c.
Therewith ~t,~b and ~c form an orthonormal basis L. Then, the exponent in the isotropic
models can be replaced with

λ′ =
α(~t · ~d)2 + β(~b · ~d)2

1− (~c · ~d)2
=
α(~t · ~d)2 + β(~b · ~d)2

(~t · ~d)2 + (~b · ~d)2
= α cos2 φ+ β sin2 φ. (19)

If α = β Equation 19 simplifies to a single scalar due to orthonormality (~t · ~d)2 + (~b ·
~d)2 + (~c · ~d)2 = 1. Care must be taken for the normalization terms which are now
dependent on α and β.

This form of exponent is used in anisotropic BRDFs like Ashikhmin-Shirley
[Ashikhmin and Shirley 2000] and Ward [Ward 1992], too. Inserting the new ex-
ponent in the isotropic kernels and finding new normalization conditions produces
the following PDFs:

D	Beck =

√
αβe−(tan2 θ)(α cos2 φ+β sin2 φ)

π cos3 θ

D	GGX =

√
αβ

π(cos2 θ + α cos2 φ+ β sin2 φ)2

D	Cos =

√
(α+1)(β+1)

2π
cos θα cos2 φ+β sin2 φ

DKent =
1

2π
∞∑
j=0

Γ(j+ 1
2

)

Γ(j+1) β
2j
(
α
2

)−2j− 1
2 I2j+ 1

2
(α)

eα cos θ+β((~b·~d)2−(~t·~d)2)

DCB =

2πk
k∑
j=1

eλj∏
i!=j(λj−λi)

−1

e
~dHA~d

DCK =
Γ(k)

2πk
|K|−1(~dHK−1~d)−k

GASG = cos θe−α(~t·~d)2−β(~b·~d)2

Thereby DKent is the Kent distribution [Kent 1982] which requires the gamma func-
tion Γ and the modified Bessel function Ix for normalization. It is related to the
von-Mises-Fisher distribution DvMF which is the special case of the Kent distribution
for β = 0. Here, α > 0 determines the concentration and β ∈ [0, α/2) the degree of
anisotropy which is different from our Equation 19.
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Two other distribution introduced by Kent [1994; 1997] are the complex Bingham
distribution DCB and some other complex distribution we call DCK (complex Kent).
The matrices A and K defines their shapes. Let λi be the eigenvalues of A which
determine the normalization of DCB. Both distributions are defined for complex unit
spheres in k (in our case k = 3) dimensions and allow ~d to be a k dimensional
complex vector. For that reason the conjugate transpose ~dH is used instead the usual
transpose ~dT .

GASG is the aforementioned Anisotropic-Spherical-Gaussian function from Xu et
al. [2013]. We were not able to find the the PDF normalization which is likely similar
to that of the Kent distribution.

5.2.1. Tangent Space of Anisotropic Kernels

For a given ~c the choice of tangent and bitangent requires an additional parameter of
rotation φ to fix the remaining DOF. The orthogonal space is represented uniquely
with

L =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 ·
sin θ cosϕ sin θ sinϕ cos θ

− sinϕ cosϕ 0

cos θ cosϕ cos θ sinϕ − sin θ


such that

(~c · ~d,~t · ~d,~b · ~d)T = L · ~d.

I.e. the rows of matrix L are the vectors ~c,~t and~b using the convention from Section
2.3 that z is the up axis.

5.3. SRBF with Fixed Centers and Frequencies

(a) Random (b) Hammersley (c) Golden Ratio (d) HEALPix

Figure 20. Center distributions for n = 768.

This section demonstrates the linear optimization of amplitude weights using
fixed centers ci and frequency parameters λi or αi, βi.

Narcowich and Ward [1996] introduced SRBF for continuous wavelet transfor-
mations on the m-sphere. They describe a mathematical foundation and show how to
localize the wavelets G. To setup the centers ci, they proposed to use subdivisions
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of the icosahedron, but did not detail this choice. Their work inspired the following
applications of SRBF in computer graphics.

SRBFs were also used for PRT lighting in [Tsai and Shih 2006]. For the light
transfer function they placed the centers ci on a subdivided icosahedron as proposed
by Narcowich and Ward [1996]. The resulting matrix was then compressed using
Clustered PCA (Principal Component Analysis). To compress the environment map
they used scattered SRBFs, meaning that all parameters of the mixture model are
optimized. This general optimization is detailed in the next sections.

Leung et al. [2006] used SRBFs for image based lighting. They stated this basis
is faster than SH because all bases have the same shape. On the other hand it looses
the orthogonality and still shows ringing artifacts. Leung at al. used a Hammersley
point (See Figure 20b) set to generate center directions ci and used the same λi for all
components. λi can be chosen dependent on the smallest geodesic distance between
the center points.

The SRBF can be fitted using least squares or regularized least squares as in [Le-
ung et al. 2006]. For n kernels with centers ~ci, m samples with directions ~di and
values bi = f(~di) the weights wi are obtained by solving

A~w = ~b

A =

G1(~c1 · ~d1) · · · Gn(~cn · ~d1)
...

. . .
...

G1(~c1 · ~dm) · · · Gn(~cn · ~dm)

 .
For this overdetermined equation system, the unconstrained solution is

~w = (ATA)−1AT~b

and the regularized variant is

~w = (ATA + εIn×n)−1AT~b

with In×n being the identity matrix.
Reasonable distributions for the centers ci are shown in Figure 20. Using random

numbers produces poor results due to high discrepancy. Two other common choices
are Hammersley point sets and the pixel centers of grid based models. To generate
a Hammersley point set the number of lobes n must be given in advance. n can be
chosen arbitrary which allows a very fine control of how many lobes with a certain λ
should be generated. However, the subdivision of grids allows adaptive tessellation to
setup components with different λ values.

We propose another low-discrepancy series, titled with ’Golden Ratio’ in Figure
20c. It can be initialized for any number n like the Hammersley set, but is faster to
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compute and better distributed. It uses the two sequences

ξi =
i

n
and ζi = Φ · i mod 1 (20)

with the golden ratio Φ = (1 +
√

5)/2. The second sequence is known as the additive
recurrence generator with the smallest possible discrepancy [Mollwollfumble 2011].
Hammersley sets use the reversed binary representation of ξi instead, which is more
difficult to obtain. In both cases the two numbers ξi and ζi are transformed to uniform
distributed directions on the sphere using:

θ = arccos(1− 2ξi) ϕ = 2πζi

To determine λ the average or minimal angle ω between two of the generated
centers can be inserted into

G(cos
ω

2
, λ) = a.

and solved for λ. Here, a is a parameter of how much contribution a kernel should
have in the midsection of two kernels. We found a ∈ [1

5 ,
1
3 ] to perform best where

smaller numbers were better in functions with large peak values (HDRdat).

Domains Radial basis functions are defined on any dimensional sphere Sd. They
can be used for hemispheres or even arbitrary sphere sectors by modifying the
sampling set.

Quality SRBF show a ringing-like pattern, but other than polynomial bases there is
no repeating of features or overshooting. I.e. there is no ringing in the classical
sense. Further, the quality depends on the uniformity of sample distribution
which can be ensured easily using Equation 20.

SRBF are rotational invariant by simply rotating center directions.

Performance A lookup takesO(n) for n components. To fit the weightsO(n3) steps
are necessary to solve the least squares problem.

5.4. Fitting through Non-linear Solvers

Commonly, lobe mixture models are variable in all parameters including the orien-
tation (~c,~t,~b) and the exponents (λ or α, β). The previous section showed that the
weight for each lobe can be optimized in a least squares sense linearly. This is not
possible for the other parameters.

We know of three different approaches to fit all the parameters: non-linear opti-
mization, expectation maximization and iterative constructions. The first method is
the topic of this section, the other two follow in the next sections. Each of the meth-
ods requires an initial guess for the parameters. Dependent on this initialization the
methods will converge into local optima.
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Using a non-linear gradient decent solver is the easiest but least robust solution. It
can be applied for any isotropic or anisotropic kernel. The Levenberg-Marquardt op-
timization algorithm [Levenberg 1944; Marquardt 1963] is often used in this context.
An implementation is freely available in the Levmar library [M.I.A. Lourakis 2004].
Another open source optimization library is Ceres [Agarwal et al. 2010] which is
based on different algorithms including Levenberg-Marquardt.

Both libraries require a number of residuals f(~x) − mm(~x, ~p) where f is the
original function and mm is the mixture model using parametrization ~p. The number
of parameters to fit is either four (isotropic) or six (anisotropic) times the number of
lobes plus one. We added the one extra value as constant offset over the entire sphere.

We tested both with respect to the robustness against local optima. Therefore, we
computed the statistics for multiple runs over the test data set with different initializa-
tions. A smaller variance reveals a higher robustness for the observed fits independent
on the initialization.

R
M

SE
st

at
is

tic
s

LDRdat HDRdat NDFdat

Linear w Levmar Levmar+Linear w Ceres Ceres+Linear w EM

max

min

median
lower quartile

upper quartile

Figure 21. Performance of Levmar and Ceres non-linear optimization libraries and expecta-
tion maximization algorithm. A 16 component isotropic cosine model was fitted to the test
data. Each solver was executed 12 times per file with different random initializations to pro-
vide minimum, maximum, median and the two quartiles of RMSE. Each boxplot shows the
geometric mean (

∏
xi)

1/n computed over all files in a data set. Smaller values represent
better fits, whereas compacter ranges show a higher robustness. The single line on the bottom
left of each plot is the deterministic mixture-reduction method from Section 5.6 followed by
EM.

Figure 21 presents the statistic over all data sets for a fitting of 16 isotropic cosine
kernels. As reference we used the linear optimization of weights from the previous
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section. It should always perform worst, because directions and exponents are not
fitted. Then we used both libraries in two different modes. First by executing the
non-linear optimization for all parameters and second by interleaving iterations for
directions+exponents with linear optimization of the weights.

The interleaved approach is more robust and produces better results when using
Ceres. Using the Levmar library both techniques produce similar outputs. Hence, in-
terleaving iterations should be preferred. In comparison between the libraries levmar
seems to be more robust than Ceres. However, Ceres often produces the better fits.
It also provides a lot of options which we did not test completely. Therefore, Ceres
could be configured more robustly.

With respect to run time both libraries are similar, if using analytical Jacobian
matrices. When using finite differences Levmar is much faster. In all cases a fit
requires several minutes and execution time varies over the data sets (1-15 min). In
comparison, the linear fitting of the weights takes half a second.

5.5. Fitting through Expectation Maximization

The EM algorithm [Dempster et al. 1977; Bilmes and others 1998] is an iterative
method, designed to find the parameters for a number of independent probability dis-
tributions such that their sum fits a target probability distribution function (PDF).
Without normalizing the integral to one, any function can be approximated as a sum
of functions.

The algorithm consists of two steps. In the expectation step (E-Step) the proba-
bility to observe a certain sample under a specific model is determined. Given that
probability, a weighted assignment of samples to components is made. In the max-
imization step (M-Step) the parameters of the distribution functions are recalculated
to maximize the likelihood for the assigned data.

The two steps can be applied in two different ways: off-line-EM and on-line-EM.
In the off-line version all assignments are computed first, before all components are
updated. This two phases are then repeated iteratively. In contrast, the models are
updated immediately after observing a single sample in on-line methods. This allows
to reject samples after their observation. We implemented the off-line method, but the
following estimations are valid for both versions.

From all the spherical kernels we employed above, the von-Mises-Fisher distribu-
tion is the most famous one in connection with EM. Banerjee et al. [2005] introduce
the EM algorithm for vMF to cluster data on high dimensional unit spheres. There is
also a library implementation in R and a comparison to spherical k-means in [Hornik
and Grün 2014].
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i ∈ [1, N ] Index of the kernel or reference to its parameter set
s ∈ [1,M ] Index of the sample
~ds, fs Observed direction and function value of sample s
~ci Central distribution direction; often µ in EM descriptions
θi Isotropic or anisotropic frequency parameter of component i
wi Scale of a component (weight of the basis function)

In order to fit arbitrary functions each sample has a weight fs. Intuitively this can
be seen as the number of observed samples in that direction. The same approach was
applied in [Vorba et al. 2014], which also provides more detailed derivations. If fs is
removed from all following equations a standard EM formulation is obtained.

5.5.1. E-Step

The probability that a sample is produced from a kernel i is

p(~ds|i) =
G(~ds · ~ci, θi)∫

ΩG(~ds · ~ci, θi)dω

and hsi =
wip(~ds|i)∑N
k=1wip(

~ds|k)
(21)

its assignment to that kernel. If the kernel G already is a probability density function
the normalization integral vanishes. With (21) a weighted statistic of sample direc-
tions can be calculated by

(ni, ~µi,Si) =
1

M

M∑
s=1

fshsi · (1, ~ds, ~ds~dTs )

5.5.2. M-Step

According to Buchta et al. [2012] the average of unit vectors ~µi maximizes the cosine
similarity

∑
s fshsiwi〈~ds,~ci〉 between the kernel direction and all assigned samples.

Therefore, the update of the new central directions is straight forward. It is the nor-
malized direction of the weighted average

~cnew
i =

~µi
‖~µi‖

.

The estimation of the kernel scales wi is essential the linear fitting problem from
Section 5.3 in the general. However, usual EM formulations ([Bilmes and others
1998]) provide the following estimation:

wnew
i =

∑
s hsi∑N

k=1

∑
s hsk

,
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which is based on the additional property
∑

iwi = 1. We can extend this formula for
a weighted approach, still enforcing a sum of one for the kernel scales

wnew
i =

∑
s fshsi∑N

k=1

∑
s fshsk

=
ni∑N
k=1 nk

.

Thus, the fitting procedure can be executed without linear optimization in the first
place. Then, the final result must be corrected by scaling the results with

∫
Ω f or by a

final linear optimization.
The frequency parameter estimation is different for all kernels, but they can be de-

rived with the same approach. A common target function to maximize the likelihood
of a parameter set is the log-likelihood

L(i) =
M∑
s=1

fshsi log p(~ds|i), (22)

here extended by the weight fs. Each parameter x can be optimized by maximizing L
with respect to x by setting ∂L/∂x = 0. Following this idea we found solutions for
DCos and DBeck. Additionally, Banerjee et al. [2005] suggest an approximation for
the von-Mises-Fisher distribution. Following their ideas, we found a similar approx-
imation for the DGauA function. The derivations of all our solutions can be found in
the supplemental document 1.

DCos λnew =
−Mni∑

s fshsi log cos θs
− 1

DBeck λnew =

√∑
s fshsi tan2 θs

Mni

DvMF λnew =
r(3− r2)

1− r2
with r =

‖~µ‖
ni

DGauA λnew =
1− 8r3

r
with r =

∑
s fshsi sin2 θs
Mni

5.5.3. EM for Anisotropic Models

The above approach of optimizing ∂L/∂x = 0 is still valid for anisotropic models.
However, before the exponents can be estimated we require the tangent space direc-
tions. We found that eigenvectors of Si correlate with our searched tangent space.
The eigenvector corresponding to the largest eigenvalue is very close to ~ci. Hence,
the other two eigenvectors yield approximations to tangent ~ti and bitangent ~bi after
re-orthogonalization with respect to ~ci. We did not test to maximize the log-likelihood
for a direction φ explicitly which could be possible too.

Once the tangent and bitangent are known the log-likelihood (Eq. 22) can be max-
imized for the exponent parameters. The optimization for the anisotropic parameters
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of the cosine distributions produced:

αnew =
−Mni

2
∑

s fshsi cos2 φ log cos θ
− 1

and the result for the Beckmann distribution is:

αnew =
Mni

2
∑M

s=1 fshsi cos2 φ tan2 θ
.

In both cases the β parameter is estimated equivalently by replacing cos2 φwith sin2 φ

in front of the logarithm/tangents. The derivations are given in supplemental docu-
ment 1 again. Similar to the isotropic case the estimation is more complicated for the
other models and requires approximate solutions.

For the two distributions DCB and DCK Kent itself provides maximum likelihood
estimates in [Kent 1994] and [Kent 1997]:

DCB Anew
i = Ui diag(− 1

l1
, ...,− 1

lk−1
, 0)UH

i

with Si = Ui diag(l1, ..., lk)U
H
i

DCK Knew
i =

k

M

M∑
s=1

~ds~d
H
s

~dHs K
−1
i
~ds

In the estimation of A the spectral decomposition of the statistics S is required. There-
with, the maximum eigenvalue of A is fixed to zero because A and A + εI describe
the same distribution. The exponent H is the conjugate transpose again.

According to Kent the second distribution is more resistant against outliers. For
more information to directional statistics please refer to [Mardia and Jupp 2000].

5.5.4. Maximum A-Posteriori Estimation

In some cases, especially in on-line EM implementations, over-fitting becomes a
problem. It is possible to introduce a regularization by maximizing the posterior dis-
tribution p(i|S) instead of the likelihood p(S|i). This can be modeled using Bayes’
theorem as p(i|S) ∝ p(S|i)p(i), where p(i) is the prior belief to obtain a certain
parametrization. More details for MAP in the application of Gaussian mixture mod-
els can be found in [Gauvain and Lee 1994].

5.5.5. Variants of the EM Algorithm

Above, we mainly described the batch-EM variant which computes the statistics over
all samples before estimating the new distribution parameters. In contrast, the online
variant updates the parameters after each observed sample. Therefore, the sufficient
statistics must be updated iteratively. In some literature ([Neal and Hinton 1998]) this
is also called iterative EM. As shown in [Neal and Hinton 1998] this kind of online/it-
erative implementation converges faster, because each new information is included
immediately and any further E-step is based on a more likely parameter set.
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Further, Neal and Hinton comment on sparse EM as an additional performance
optimization. This variant ignores certain samples for some of the distributions to
avoid far ranged influences if there are enough closer components.

One of the most interesting applications of GMM in rendering, we found, is a grid
of GMM for volumetric lighting [Jakob et al. 2011]. They use an EM-variant which
they call progressive accelerated EM. This can be seen as a hierarchical refining sparse
EM.

5.6. Fitting through Reduction and Refinement

Another approach to generate GMMs is to iteratively add or remove components from
another GMM. We found several good overviews on reduction techniques [Crouse
et al. 2011; Ardeshiri et al. 2015]. While there are many more involved algorithms
we show only very fast methods to reduce models beginning with several thousands
components. With such an method an initial distribution could be generated from the
input cube maps with one component per pixel (millions) and then reduced down to
the desired number of components. It happens that some of the greedy initialization
methods of complex algorithms are already quite good and compete with the more
complex algorithms itself. Crouse et al. [2011] state that Runnalls’ method [Runnalls
2007] has similar quality like much more complex algorithms. Also Crouse et al.
[2011] introduce West’s [West 1993] greedy initialization.

All those algorithms are based on the standard multivariate (k-dimensional) nor-
mal distribution

N [Σ, ~µ](~x) =
1√

(2π)k/2|Σ|
exp

(
−1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
.

Merging two Gaussian kernels i and j with weights w is possible in a closed form
using

wij = wi + wj

~µsij =
wi
wij

~µi +
wj
wij

~µj

Σij =
1

wij

∑
k∈{i,j}

wk
(
Σk + (~µk − ~µij)(~µk − ~µij)T

)
which is the foundation of all reduction algorithms.

In Runnalls’ method each merge searches for the pair i, j that minimizes the
Kullback-Leibler divergence. This measure describes the amount of information lost
if one probability function is approximated by another. There is no closed form in case
of the Gaussian kernels, but Runnalls gave an approximation for the upper bound of
the KL divergence and derived the cost function

cost =
1

2
(wij log|Σij | − wi log|Σi| − wj log|Σj |).
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Hence, Runnalls’ algorithm has a quadratic runtime cost (for the pair-search) in
each reduction step. Contrary, the method of West always takes i as the component
with the lowest modified weight wi/trace(Σi) which we can obtain fast using a prior-
ity queue. Each step in the search takes linear time then. Moreover, West uses another
cost function which minimizes the squared integral error∫

x
(fi(x)− fj(x))2dx

namely

cost = w2
iN [2Σi, ~µi](~µi) + w2

jN [2Σj , ~µj ](~µj)− 2wiwjN [Σi + Σj , ~µi](~µj).

We tried both search methods with both error functions and found Runnalls global
search to produce the best results. However, using West’s search with a fixed i to-
gether with the KL cost function produces similar results faster. The second cost
function preformed worse for both algorithms. If reduction goes down to very few
lobes (< 100) the quality of Runnalls method is worth the time spent.

Finally we used the following approach to fit the lobe models in the upcoming
comparison section and for Figure 21.

1. Sample the target function at n · 20 uniformly distributed locations, where n
is the target number of components. (We used the deterministic Golden Ratio
sampling as in Figure 20c.)

2. Run Runnalls reduction method down to n components. At any merge renor-
malize µ to keep the distributions on the sphere surface.

3. Use the above result to initialize the kernels (any model G).

4. Run the EM algorithm.

5. Find optimal weights w with linear optimization.

The factor 20 in the first step is an arbitrary factor determined by experimentation.
It is a good compromise between number of components and approximation of the
target function. Additionally, we modified the reduction algorithm by reprojecting
~µij onto the sphere. This forces the 3D multivariate Gaussian to be more similar to
our other kernel models and thus produces better results if used as initialization. A
comparison to the previous fitting methods is given in Figure 21 (single line in the
bottom left of each plot). Only in few cases the random initialization led to better
results and for the HDR data set the reduction technique performed superior to all
other methods.

Domains Arbitrary sphere surface sectors.
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Quality Mixture models result in smoothed versions of the input function with focus
on high-energy regions. It is possible that only certain features are reproduced
other than the general appearance, if over-fitting occurs.

The mixture models are rotational invariant by simply rotating center directions.

Performance A lookup takesO(n) for n components. In the above fitting procedure
step 1 requires O(s3) steps to reduce s samples down to n using Runnalls
method. The batch-EM method requires O(n · s) steps per iteration and often
converges in less then 100 iterations. Since s� 100 ∧ s > n the total running
time is limited by O(s3), which is the reason that we used only s = n · 20

samples.

6. Model Comparison

In this section all previously introduced models are compared for their ability to match
the target function relative to their space consumption. Further, we include a theoret-
ical comparison of the fitting and sampling performance for each model. Providing
measured timings is difficult, because of the many different influences. Some models
depend on the size of the input data set and others scale with the increasing number
of target basis functions. Further, our testing framework is designed for flexibility of
different models and by far not optimal for most of them. Most certainly each of the
models can be optimized with additional effort and therefore timing comparisons at
the current state would not be reliable.

6.1. Spherical Functions

First we want to compare the fully spherical functions which include some of the
hemispherical models (like projections) with two hemispheres. If applicable for both
domains, the models do not behave very differently. The next section, for hemispher-
ical models only, is mainly to compare the different polynomial bases to each other.

In the following each model is fitted against each data set using a number of
different target parameters. Each set of parameters yields a model specific space con-
sumption with all values being stored as 32-bit float values. While this is not optimal
for LDR data and further optimizations would be possible by different discretizations
it is still a fair comparison between the models. For reasons of time consumption
and numerical issues, the number of tested parameters varies for different models. Fi-
nally, the errors inside each data set are averaged using the geometric mean (

∏
xi)

1/n

to produce a single graph for comparison.
Figure 22 shows the RMSE for all models in two different ways. On the left hand

we can see a common plot. As expected, we can observe a monotonous decrease in
error for all models. Since the graphs overlap strongly, the right side shows the errors
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Figure 22. Error over size comparison for spherical models. On the right we subtracted offset
polynomials to emphasis the differences between models. The polynomials are fitted to each
data set individually and are visualized by the (straight) gray line.
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relative to a fitted polynomial. While the slopes in this visualization have no meaning,
it allows to compare the models against each other more easily. A second Figure (23)
shows the structured similarity (SSIM) in the same way as Figure 22. Additionally,
example images can be found in the supplemental document to get a visual impression
of the models.

Most of the grid models perform very similar. Polar coordinates and projections
are worse than many other models in many cases. For projection, only elliptical equal
area mapping is shown, but the others did not produce lower errors. Since the input is
provided as cube map, the cube map itself reaches zero error in the last sample. For
reasons of pattern alignment it fails in the NDF data set over most sizes. In general,
the more equally distributed models like HEALPix and Icosahedral maps seem to be
more robust and produce good results for any data. Especially in polar coordinates,
the alignment with the data is important and can influence the quality a lot. The SSIM
graphs reflect the same observations for grid based models.

The much used SH basis is slightly better than the mapping based methods with
respect to RMSE, but is more expensive than these. The curves are shown without
windowing, which produces closer fits in the sense of RMSE. On the other hand, the
distracting ringing has a high penalty on SSIM, where the SH is much worse than
grid based models for HDR and NDF data. Damping the coefficients of higher bands
visually improves the results (see Supplemental 2), but reduces the memory to error
ratio in RMSE. With windowing the SH is not better than any grid method in least
squares sense. In that case simple grids like EEA projection or octahedral mapping
should be preferred.

In the long run the adaptive wavelet subdivision performs much better than any-
thing else for HDR data in RMSE, while discontinuities lead to bad SSIM values.
However, implementing the quad-tree on the sphere adds some overhead and redun-
dancy in case of the linear vertex base. This overhead is too large in connection with
uniformly distributed data like in the LDR test data. Further, the wavelets using adap-
tive coefficient trees cannot compete in the low memory range below 1000 Byte. Note
that we did not use discretization or entropy encoding to make use of the value distri-
butions in the coefficients. Additionally, it is also possible to implement the wavelets
on top of any mapping method in the usual 2D domain.

If compression should go below 1000 Byte lobe mixture models are the clear win-
ner and are recommended as long as time constraints do not prohibit the fitting pro-
cess. At least for our data there is no real difference between anisotropic and isotropic
components with respect to RMSE. The anisotropic components can fit some features
better, but also need two additional parameters. Further, the perceived similarity is
higher for isotropic fits, except for NDF data which indeed has an higher anisotropy.
Therefore, the anisotropic form should only be considered, if the data is known to be
anisotropic.
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The alternative using fixed centers and exponents for the mixture components is
not better than any mapping model in general. In some occasions it shows an higher
similarity than most other models, but does not do so reliable. It might be more
effective if some structure in the data is known. Then, directions and exponents could
be fitted over all data sets. Amplitudes for each individual data can be computed
with this data specific component distribution. This may achieve similar results as an
unrestricted mixture model, if the data shares a common structure.

6.2. Hemispherical Functions

The experiments for hemispherical functions were performed in the same way as for
spherical functions, except that only half of the data (positive z axis) was presented
to the fitting algorithm and used in error computation. Overall, the behavior of the
different models is very similar to previous comparison as shown in Figure 24.

From the grid based models, the octahedral mapping performs best with respect
to both measurements. Overall, using mapping based methods seems a good choice
in the hemispherical for many applications.

Again, wavelets and mixture functions have the best compression ratios for the
same reasons as before. Particularly, mixture models perform exceptionally well in
visual structure (SSIM), whereas wavelets are again penalized by discontinuities. An
exception for RMSE is the mixture function in NDFdat. The poor performance comes
from degenerated components which drifted to the wrong hemisphere. We are con-
fident that this problem can solved by forcing directions to the correct hemisphere in
the EM algorithm.

Comparing the polynomial bases we can get some novel insights. First, using
the full spherical SH basis without any modifications gives results similar to the grid
based methods. Using specialized hemispherical bases produces better results in al-
most all cases. From those, Makhotkin’s basis is worse than all others even in its
orthogonalized form, which is much better than the original as shown in the supple-
mental 1. All other models (HSH, Zernike and generalizedH) have very similar error
values and show better compression rations than grid based methods. From those
three, HSH is often slightly worse than the other two. However, since the generalized
H basis is not orthogonal, choices should consider all three models: HSH in case the
target function has a constant value on horizon andH or Zernike otherwise.

6.3. Runtimes

The theoretical runtimes were already given at the end of the individual sections. They
can be summarized in five categories:
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Fitting Sampling
All mapping based models with n pixels O(n) O(1)

Polynomial bases with l bands O(l2) O(l2)

Wavelet tree with f faces and k2 pixels per face O(n = fk2) O(f log k)

n-component mixture models, weights only O(n3) O(n)

n-component mixture models (s > n input samples) O(s3) O(n)

The fastest models are those based on a mapping. They can be fitted by resam-
pling the target function with a constant cost per resulting pixel. A lookup is inde-
pendent of the resolution except for cache reasons. The second fastest model is the
wavelet transformation for which fitting has the same time complexity as for map-
ping based models and a lookup is possible in logarithmic time. Polynomial bases
and mixture models are slowest and have a comparable lookup costs. In both cases
it is determined by the number of basis functions/components. However, using tricks
like k-nearest neighbor searches the lookup cost for sparse mixture models can be
reduced. In any case is the projection to polynomial bases faster than the fitting of
mixture models.

7. Extensions to the Bidirectional Domain

In computer graphics and physics there are bidirectional functions whose values de-
pend on two independent directions. Examples are scattering functions on surfaces
(BRDFs) and in free space (BSDFs). In a function S2 × S2 7→ X each point of one
sphere surface is another spherical function.

7.1. Parametrizations

Using two directions, there are two different choices for the parametrization. The
first trivially uses the polar coordinates of both direction vectors. The second one
represents the vectors relative to the average (half) vector. It is especially useful for
BRDFs for reasons of feature alignment [Rusinkiewicz 1998]. Both are shown in
Figure 26

In the first step the half vector of ~x1 and ~x2 is calculated as

~h =
~x1 + ~x2

‖~x1 + ~x2‖
.

Then two rotations are be applied to one of the vectors:

~d = rotY(−θh) · rotZ(−ϕh) · ~x1.

The two rotations effectively align the half vector ~h with the z-axis. Note that the
difference vector is always in the positive half space of the half-vector. It therefore
has an angle θd ∈ [0, π/2]. Also, it is possible to use a single rotation around ~h × z
which yields a different but similar parametrization.
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Figure 26. Two variants for the parametrization of bidirectional functions.

To revert the parametrization ~x1 can be computed by the inverse rotation and ~x2

by a reflection at ~h namely ~x2 = 2(~x1 ·~h)~h−~x1. A fast implementation which avoids
the heavy use of trigonometric functions is shown in listing 11.

# Map two directions onto half and difference vector.
reparamBidirToHalfDiff(dir0, dir1) -> (h, d)

h = normalize(dir0 + dir1)
# Construct rotation matrix rotY(-t)rotZ(-p) without trigonometry:
sT = sqrt(1 - h.z*h.z) # sin(theta) via trigonometric Pythagoras
sP = sT < eps ? 0 : h.y / sT # sin(phi)
cP = sT < eps ? 1 : h.x / sT # cos(phi)
rYZ = ( h.z * cP, h.z * sP, -sT,

-sP, cP, 0,
h.x, h.y, h.z)

d = rYZ * dir0
end

# Revert the mapping.
reparamHalfDiffToBidir(h, d) -> (dir0, dir1)

# Construct inverse rotation matrix transpose(rotY(-t)rotZ(-p)):
sT = sqrt(1 - h.z*h.z) # sin(theta) via trigonometric Pythagoras
sP = sT < eps ? 0 : h.y / sT # sin(phi)
cP = sT < eps ? 1 : h.x / sT # cos(phi)
rYZinv = ( h.z * cP, -sP, h.x,

h.z * sP, cP, h.y,
-sT, 0, h.z)

dir0 = rYZinv * d
dir1 = 2 * dot(dir0, h) * h - dir0

end

Listing 11. Fast parametrization changes for bidirectional functions. The eps is to avoid
divisions by 0 in practice.

7.2. Mapping Based Models

Many of the above models can be generalized to the twofold case. Each of the grid
based mapping methods can be combined with each other by storing another map per
cell. Thus, the two dimensional mapping becomes a four dimensional one. In some
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cases, like isotropic reflection functions, one of the angles can be discarded. Then, a
one-dimensional mapping of the remaining angle is the most appropriate choice.

7.3. Polynomial Bases

Spherical polynomial bases

f(~d) =
∑
i

ci · bi(~d).

have constant factors ci which can be generalized into functions of a second direction:

f(~da, ~db) =
∑
i

ci(~db) · bi(~da).

Now ci(~db) can be represented with the same or another basis recursively:

f(~da, ~db) =
∑
i

∑
j

cij · bj(~db)

 · bi(~da)
=
∑
i

∑
j

bi(~da) · cij · bj(~db)

= Y T (~da) ·C · Y (~db).

The reordering in the second line is possible due to commutativity and distributivity
of sum and product. The third line is in matrix notation assuming that the bases bi and
bj are the same. However, this is not necessary in general. It is also possible to use an
entirely different basis or just another number of basis functions, if the two directions
are of different semantic or importance.

If reciprocity f(~da, ~db) = f(~db, ~da) is desired, which is the case for scattering
functions, the coefficient matrix C must be symmetric. Further memory savings are
possible if even more symmetries can occur with respect to the chosen basis. An
example is the BRDF representation of [Westin et al. 1992] in SH-basis.

8. Conclusions

There are many different parametrizations, polynomial bases and mixture models de-
scribed and tested above. The following list should give a guide on when to use which
of the models. We discarded some of them in this list, because they either perform
worse than others or are more complicated to implement. The winners are:

Projections (Section 3.3) The projections, we have shown, map hemispheres to a
quadratic textures. They can be extended to spheres using two faces. For the
mapping from disc to square two forms are available: Shirley’s mapping and
the Elliptical mapping which both perform similar with respect to RMSE.
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• Very fast (mapping based)

• Only one texture for hemispherical functions

Cube/Isocube (Sections 3.2 and 3.7) Cube maps are among the most used maps
and a lot of data can be found in this format. The extension to equal area pixel
Isocubes can be added easily, but is not worth the extra costs for most scenarios.

• Very fast (mapping based)

• Hardware sampling support

• File formats like .dds and .ktx

HEALPix (Section 3.6) The HEALPix subdivision is the most regular grid we know
of. If precision is of very high importance this map should be considered.

• Very fast (mapping based)

• Highly regular

Spherical Harmonics (Section 4.2) SHs are very smoothing representations which
allow some nice mathematical tricks. Other than that, they are not better than
mapping based approaches. To represent more details or to get a faster sampling
prefer projections and cube maps. More bands lead to high computation times,
ringing and numerical issues.

• Orthogonal base

• Rotation invariant

Mixture Models (Section 5) The best choice for small memory budgets, but hard to
fit. The best fitting method is EM (Section 5.5) or reduction (Section 5.6) if a
meaningful high resolution mixture is provided. Non-linear optimizations tend
to local optimal more often.

• Highest compression in low ranges

• High adaption to HDR data

• Rotation invariant

Wavelets (Section 3.8) For bigger data the adaptive quad tree performs better than
many other models. Therewith, Haar wavelets are much easier to implement,
because they do not need neighborhoods, and should be preferred in subdivided
spheres. Moreover, the wavelet compression can be done on 2D images like
Projections or Cube maps.

• Highest compression in the mid to high ranges

• High adaption to edges

• Moderately fast
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8.1. Open Issues

As you might expect there is not much to do considering spherical functions. The only
really open problem is to find the globally optimal fit for mixture models. Further,
wavelet transformations on the sphere seem to have space for improvements.

With respect to this document there are at least two open topics:

Principal Component Analysis In PCA a matrix is decomposed into eigenvectors
and eigenvalues. Then, eigenvectors with a small contribution (small eigen-
value) are discarded for lossy compression / simplification of the data. It is
possible to apply a PCA on all but the adaptive spherical mappings (i.e. all
except wavelets and mixture models). It is therefore no individual mapping and
not part of this work.

Spherical Harmonic Wavelets There are more approaches to the wavelet transfor-
mation on the sphere than using a tessellation. For example in [Lira et al. 2015]
the SH wavelets are based on Legendre polynomials and form non-orthogonal
bases on the sphere.
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CASTAÑO, I., 2012. Seamless Cube Map Filtering. URL: http://the-witness.net/
news/2012/02/seamless-cube-map-filtering/. 8

CIGOLLE, Z. H., DONOW, S., EVANGELAKOS, D., MARA, M., MCGUIRE, M., AND

MEYER, Q. 2014. A Survey of Efficient Representations for Independent Unit Vec-
tors. Journal of Computer Graphics Techniques (JCGT) 3, 2, 1–30. URL: http:
//jcgt.org/published/0003/02/01/. 2, 9, 10

CRASSIN, C., NEYRET, F., SAINZ, M., GREEN, S., AND EISEMANN, E. 2011. Interac-
tive Indirect Illumination Using Voxel Cone Tracing. Computer Graphics Forum (CGF)
30, 7, 1921–1930. URL: https://research.nvidia.com/publication/

interactive-indirect-illumination-using-voxel-cone-tracing. 2

CROUSE, D. F., WILLETT, P., PATTIPATI, K., AND SVENSSON, L. 2011. A Look at
Gaussian Mixture Reduction Algorithms. In Proc. of Conference on Information Fusion,
1–8. URL: http://ieeexplore.ieee.org/document/5977695. 2, 41, 42

DEBEVEC, P. Light Probe Image Gallery. Accessed: 2015-02-05. URL: http://www.
pauldebevec.com/Probes/. 4

DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. 1977. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 1–38.
URL: https://www.jstor.org/stable/2984875. 2, 3, 38

ENGELHARDT, T., AND DACHSBACHER, C. 2008. Octahedron Environment Maps. In
Proc. of Vision, Modeling, and Visualization (VMV), VMV, 383–388. URL: www.vis.
uni-stuttgart.de/˜engelhts/paper/vmvOctaMaps.pdf. 10

FISHER, R. 1953. Dispersion on a Sphere. Proc. of Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences 217, 1130, 295–305. URL: http://rspa.
royalsocietypublishing.org/content/217/1130/295. 32

FREEDEN, W., SCHREINER, M., AND FRANKE, R. 1997. A Survey on
Spherical Spline Approximation. Surveys Mathematics for Industry 7, 29–85.
URL: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:

386-kluedo-5590. 32

GAUTRON, P., KRIVANEK, J., PATTANAIK, S. N., AND BOUATOUCH, K. 2004. A Novel
Hemispherical Basis for Accurate and Efficient Rendering. In Rendering Techniques ’04
(Proc. EGSR), Eurographics Association, EGSR, 321–330. URL: https://diglib.
eg.org/handle/10.2312/EGWR.EGSR04.321-330. 24

GAUVAIN, J.-L., AND LEE, C.-H. 1994. Maximum A Posteriori Estimation for Multivariate
Gaussian Mixture Observations of Markov Chains. IEEE Transactions on Speech and
Audio Processing 2, 2, 291–298. URL: https://doi.org/10.1109/89.279278.
41

56

http://www.jstatsoft.org/v50/i10/paper
http://www.jstatsoft.org/v50/i10/paper
http://the-witness.net/news/2012/02/seamless-cube-map-filtering/
http://the-witness.net/news/2012/02/seamless-cube-map-filtering/
http://jcgt.org/published/0003/02/01/
http://jcgt.org/published/0003/02/01/
https://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing
https://research.nvidia.com/publication/interactive-indirect-illumination-using-voxel-cone-tracing
http://ieeexplore.ieee.org/document/5977695
http://www.pauldebevec.com/Probes/
http://www.pauldebevec.com/Probes/
https://www.jstor.org/stable/2984875
www.vis.uni-stuttgart.de/~engelhts/paper/vmvOctaMaps.pdf
www.vis.uni-stuttgart.de/~engelhts/paper/vmvOctaMaps.pdf
http://rspa.royalsocietypublishing.org/content/217/1130/295
http://rspa.royalsocietypublishing.org/content/217/1130/295
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-5590
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hbz:386-kluedo-5590
https://diglib.eg.org/handle/10.2312/EGWR.EGSR04.321-330
https://diglib.eg.org/handle/10.2312/EGWR.EGSR04.321-330
https://doi.org/10.1109/89.279278


Technical report July 13, 2017

GORSKI, K. M., HIVON, E., BANDAY, A., WANDELT, B. D., HANSEN, F. K., REINECKE,
M., AND BARTELMANN, M. 2005. HEALPix: a Framework for High-Resolution Dis-
cretization and Fast Analysis of Data Distributed on the Sphere. The Astrophysical Journal
622, 2, 759. URL: http://stacks.iop.org/0004-637X/622/i=2/a=759. 14

GREEN, R. 2003. Spherical Harmonic Lighting: The Gritty Details. In Archives of the Game
Developers Conference, vol. 2, 2–3. URL: http://www.gdcvault.com/play/
1022720/Spherical-Harmonic-Lighting-The-Gritty. 22

GREENE, N. 1986. Environment Mapping and Other Applications of World Projections.
IEEE Computer Graphics Applications 6, 11, 21–29. URL: http://dx.doi.org/
10.1109/MCG.1986.276658. 2

GREGER, G., SHIRLEY, P., HUBBARD, P. M., AND GREENBERG, D. P. 1998. The
Irradiance Volume. IEEE Computer Graphics and Applications 18, 2, 32–43. URL:
http://dx.doi.org/10.1109/38.656788. 2

GROSSMANN, A., AND MORLET, J. 1984. Decomposition of Hardy Functions into Square
Integrable Wavelets of Constant Shape. SIAM Journal on Mathematical Analysis 15, 4,
723–736. URL: http://dx.doi.org/10.1137/0515056. 17

HABEL, R., AND WIMMER, M. 2010. Efficient Irradiance Normal Mapping. In Proc. of Sym-
posium on Interactive 3D Graphics and Games, I3D, 189–195. URL: http://www.cg.
tuwien.ac.at/research/publications/2010/Habel-2010-EIN/. 3, 25

HEIDRICH, W., AND SEIDEL, H.-P. 1998. View-independent Environment Maps. In Proc.
of ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware (HWWS), ACM,
HWWS ’98, 39–ff. URL: http://doi.acm.org/10.1145/285305.285310. 9

HEITZ, E., DUPUY, J., CRASSIN, C., AND DACHSBACHER, C. 2015. The SGGX Microflake
Distribution. ACM Transactions on Graphics (TOG) 34, 4, 48:1–48:11. URL: http:
//doi.acm.org/10.1145/2766988. 2
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