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Figure 1. The Crytek Sponza1 (5.7ms, 245k triangles, 10k caches, 4 band SHs) with a visu-
alization of the caches (left) and a Volkswagen test data set using an environment map from
Persson2 (10.5ms, 1.35M triangles, 10k caches, 6 band SHs) with multiple bounce indirect
illumination and slightly glossy surfaces (right).

Abstract

In this paper we present a new real-time approach for indirect global illumination under dy-
namic lighting conditions. We use surfels to gather a sampling of the local illumination and
propagate the light through the scene using a hierarchy and a set of precomputed light trans-
port paths. The light is then aggregated into caches for lighting static and dynamic geometry.
By using a spherical harmonics representation, caches preserve incident light directions to
allow both diffuse and slightly glossy BRDFs for indirect lighting. We provide experimental
results for up to eight bands of spherical harmonics to stress the limits of specular reflections.
In addition, we apply a chrominance downsampling to reduce the memory overhead of the
caches.

The sparse sampling of illumination in surfels also enables indirect lighting from many
light sources and an efficient progressive multi-bounce implementation. Furthermore, any
existing pipeline can be used for surfel lighting, facilitating the use of all kinds of light sources,
including sky lights, without a large implementation effort. In addition to the general initial
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lighting, our method adds a simple way to incorporate area lights. If using an emissive term in
the surfels, area lights are included in the precomputed light transport. Thus, precomputation
takes care of the proper shadowing.

1. Introduction

The simulation of light, including the effects of bounced light, known as global il-
lumination, is crucial for the generation of photorealistic imagery. The concepts of
light transport for the purpose of rendering are well understood but expensive to cal-
culate. The computational cost is prohibitive especially for interactive applications.
Both precomputation and approximation are viable methods to achieve considerable
speedups.

Current illumination algorithms often solve this problem at the expense of com-
putation time and memory consumption. We propose a new algorithm that achieves
high real-time frame rates at comparably low memory consumption and supports all
kinds of dynamic light sources. Except for the comparably fast per-pixel evaluation,
the approach is resolution independent.

To achieve competitive performance, our algorithm relies on the precomputation
of light transport factors in the form of spherical harmonics (SH). The lighting in the
scene is sampled using surfels, a finite set of discs representing the scene’s static sur-
faces. Then light is conveyed through precomputed links and accumulated in caches
placed in a grid or light map. Dynamic and highly detailed objects can be shaded
using the grid of light caches. Using a light map for static geometry increases the
quality on planar surfaces and saves memory in empty regions.

2. Related Work

2.1. Global Illumination and Radiosity Approaches

The problem of determining the global illumination of a scene can be traced back to
the formulation of the rendering equation [Kajiya 1986]. Radiosity [Goral et al. 1984]
is a finite-element method that reduces the complexity of the global-illumination cal-
culation for environments containing only Lambertian diffuse surfaces. It has been
extended to account for glossy and mirror-like reflections at little additional cost, but
with artifacts due to discretization of directions [Immel et al. 1986]. Hierarchical ra-
diosity [Hanrahan et al. 1991] allows the illumination of large scenes and is closely
related to the proposed algorithm. Instant radiosity [Keller 1997] is a GPU-friendly
technique that approximates radiosity using only point light sources, yielding inter-
active frame rates. Laine et al. [2007] describe a technique to reuse point lights and
incrementally maintain a good distribution. They achieve real-time frame rates for
single-bounce indirect illumination.
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2.2. Precomputed Radiance Transfer

Precomptuted radiance transfer (PRT) [Sloan et al. 2002] can be used to simulate dif-
fuse and glossy global illumination from a light environment at infinite distance. Sim-
ilar to the proposed algorithm, PRT uses a precomputation step, allowing for lighting
updates in real time. Local light sources can be handled by using unstructured light
clouds [Kristensen et al. 2005].

2.3. Cache-based Approaches

Because Lambertian diffuse surfaces exhibit isotropic luminance, indirect diffuse il-
lumination from static light sources can be precalculated and stored in textures known
as light maps. The technique was extended to account for small-scale surface details
from normal maps [Mitchell et al. 2006]. Lighting can also be precalculated for dis-
crete points in 3D space. Greger et al. [1998] store spherical irradiance information
in a so-called irradiance volume. Compressed radiance caching (CRC) reduces the
memory overhead due to sparse volume allocation and chrominance compression in
YCoCg color space [Vardis et al. 2014]. We apply this color space compression to
our SH-caches. Lensing and Broll [2013] use a sparse cache distribution on surfaces
to reduce memory and computational overhead in their LightSkin framework.

2.4. Real-time Approaches

Recently, various dynamic real-time global illumination techniques have been pub-
lished. Dong et al. [2009] suggested using virtual area lights for fast rendering of
global illumination using the graphics hardware. Cascaded light propagation volumes
(C-LPV) [Kaplanyan and Dachsbacher 2010] is a method for (mainly) single-bounce
indirect illumination in real-time. Using C-LPV, light is discretized in a voxel volume
and exchanged between adjacent cells iteratively. Geomerics have developed a real-
time global illumination middleware called Enlighten [Martin and Einarsson 2010]
that presumably works similarly to the technique proposed in this paper. Unfortu-
nately, publicly available details on Enlighten’s inner workings are sparse. Thiede-
mann et al. [2011] suggested a technique using a voxel representation of the scene
for fast calculation of single-bounce indirect illumination. Voxel cone tracing (VCT)
[Crassin et al. 2011] is based on a similar idea and enables both diffuse and glossy
light bounces in dynamic scenes using a sparse voxelization of geometry. The latest
real-time implementations can be found in the VXGI framework [Nvidia 2014] and
in [McLaren 2014], where the sparse voxelization is replaced by a cascaded volume.
A comprehensive overview of interactive global illumination techniques can be found
in [Ritschel et al. 2012].
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2.5. Spherical Bases

Many of the aforementioned techniques rely on spherical basis functions for the com-
pact representation of lighting information. Spherical harmonics (SH) [Green 2003],
orthographic basis functions defined on the sphere, are most commonly used. SH
allow for the compact storage of low-frequency spherical functions with only a few
(e.g., 9–25 in the case of PRT) coefficients and have desirable mathematical prop-
erties that greatly accelerate lighting-related computations [Sloan 2008]. While SH
are defined over a full sphere, hemispherical harmonics (HSH) [Gautron et al. 2004]
allow for an even more compact representation when only hemispherical information
is needed. TheH-basis [Habel and Wimmer 2010] is another hemispherical basis that
preserves the desirable properties of SH.

We propose a new algorithm which is a combination of different techniques men-
tioned. Our contributions are:

• a hybrid method for multiple-bounce indirect illumination that combines hier-
archical radiosity and (ir)radiance volumes;
• the use of surfels for direct light gathering allowing any kind of dynamic light

source in real time;
• a fast GPU implementation with low memory consumption;
• high temporal coherency due to a view-independent surfel hierarchy and SH

caches;
• an evaluation of SH for the purpose of specular lighting for up to eight bands.

3. Algorithm Overview

The algorithm heavily relies on precomputation of important light transport paths.
The steps that are executed at runtime are shown in Figure 2. In step (1), shadow
maps used for all direct lighting calculations are generated. Then, surfels with known
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Figure 2. Pipeline and light transport overview.
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material properties are lit, and the outgoing flux is stored in the leaves of a binary tree
(step 2). In step (3), the flux is propagated up along the hierarchy of sender patches.
The cache lighting steps ((4.1) and (4.2)) accumulate the flux, multiplied with light
transport factors, from a fixed-size set of linked nodes in the tree. We compute caches
in a 3D grid and a 2D light map to increase the quality on static surfaces and overcome
light-bleeding artifacts. At this point, caches contain a compressed representation
(SH) of the incoming spherical radiance for the respective positions. Finally, indirect
illumination is interpolated per pixel either from four associated light map caches or
from the surrounding eight grid caches (step (5)). Simultaneously, direct lighting is
computed as usual, using the shadow maps from step (1).

The precomputation consists of four tasks and provides the surfel hierarchy, the
cache placement, and the linking between sender surfels, i.e., tree nodes, and caches.
The tasks are:
• surfel placement (ideally Poisson-disc sampled);
• hierarchy building (kd-tree or hierarchical clustering);
• cache placement;
• link generation (creating SH transport factors).

In the early stages of the runtime pipeline, an existing renderer can be used to
illuminate the surfels like a set of diffuse pixels. Using the existing renderer allows
any implemented type of light source to also affect indirect lighting. This includes
further progressive light bounces. To this end, cache values of the last frame are used
to add another indirection to the surfels’ illumination. Additionally, area lights can be
implemented by sampling an emissive and optionally animated texture for each surfel.
The first-bounce indirect lighting computation will then include the direct lighting of
the area lights.

The light transport itself is simulated by the accumulation of flux from the illu-
minated surfel hierarchy. We tested two variants for the summation process. In the
first case, the transport factors are projected into the SH basis during preprocessing.
Hence, the cache illumination only needs to sum up the stored coefficients from each
of its nL links multiplied with the actual flux. The second solution is to compute the
projection at runtime. This requires the direction from cache to sender and a scalar
transport factor to be provided. It then takes more ALU instructions but fewer mem-
ory accesses to compute the final SH. The second solution is slightly faster and has a
low memory cost which is invariant in the number of final SH bands l. On the down-
side, it is a bit less accurate because the projection during precomputation preserves
more detail.

3.1. Light Transport Solution

To illuminate a point on a surface we need to solve the following modified lighting
equation. The integration scope Ω is 2πsr for surface points and hemispherical caches
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or 4πsr for fully spherical caches. Without loss of generality, we assume Ω = 4πsr
and the use of SH caches in the following equations:

Lr(ωo) =
∑
s∈N

∫
Ω
fr(ω, ωo)Vs(ω)Ls(ω)〈nr, ω〉+dω,

where N with |N | = nL denotes the set of linked sender patches for the receiving
cache r, Vs(ω) is the sender visibility at the receiver position, and Ls is its radiance.
The term 〈nr, ω〉+ is the clamped (positive) cosine lobe at the receiver’s normal nr,
and fr(ω, ωo) is the scattering function (BSDF or BRDF dependent on the domain Ω)
of the material at the receiver. The visibility Vs(ω) 7→ {0, 1} is defined on the whole
sphere and yields 1 for all directions in which the patch s is visible and 0, otherwise.

Because of the Lambertian property and the assumption of a constant radiance
over the entire sender, Ls is constant and does not depend on the integration over ω.
Consequently, the radiosityBs is equal to Ls ·π, again using the Lambertian property.
Furthermore, the receiver-dependent quantities, fr and 〈nr, ω〉+, do not involve the
patch s. This allows the following reordering:

Lr(ωo) =

∫
Ω
fr(ω, ωo)

(∑
s∈N

Bs
π
Vs(ω)

)
〈nr, ω〉+dω. (1)

Now, Vs(ω)/π is projected into an SH ”form factor” FSHs with coefficients cs,i
and basis functions yi(ω), where i ∈ [0, . . . , l2−1]. Thus, a link is represented as
FSHs(ω) =

∑
i cs,iyi(ω). The first value cs,0 roughly corresponds to the form factor

in radiosity, all cs,i with i > 0 additionally preserve directional information:

cs,i =
1

π

∫
Ω

yi(ω)Vs(ω)dω

=
As
N ′π

N ′∑
j=1

yi(ωj)Vs(ωj)
〈ns, ωj〉+

d2
j

. (2)

Equation (2) is numerically integrated by Monte Carlo integration as shown in Ap-
pendix A. There, N ′ is the number of rays used to sample the visibility of the sender,
where all ωj are chosen to point to some position on the sender. The value As is
the surface area of the sender, and dj is the distance from the cache to the sampling
position.

Using FSHs , the incident radiance LSH at a cache can be computed as

LSH =
∑
s∈N

BsFSHs . (3)

Eventually, in the cache lighting step (step (4)) of Figure 2, this sum is computed
for all caches. For reasons of performance, we store flux Φs instead of Bs (see Sec-
tion 4.1) and need to divide by the area.
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3.2. Per-pixel Lighting

Once the caches are computed, the illumination can be applied to pixels in an arbitrary
renderer. In the case of dynamic geometry and objects without light maps, the 3D
radiance grid is interpolated trilinearly, and the resulting SH function is evaluated.
For static light-mapped geometry, four caches are interpolated bilinearly instead. To
guarantee that all four texels are filled, we apply a dilation over the eight neighbors to
prevent artifacts at texture seams.

Given Equations (1) and (3), solving the indirect illumination at runtime can be
reduced to a dot product of SH coefficients. Let the term fr(ω, ωo)〈nr, ω〉+ be given
as XSH with SH coefficients cX . Then,

Lr(ωo) =

∫
Ω
fr(ωi, ω)LSH〈nr, ω〉+dω

= 〈LSH , XSH〉.

It is invariant whether SH coefficients are interpolated first and then evaluated or vice
versa. Let wi be the interpolation weights. The following holds true because of the
distributive property:

∑
i

wi

∑
j

cLi,jcX,j

 =
∑
j

(∑
i

wicLi,j

)
cX,j .

Since we can use the hardware to interpolate the coefficients efficiently, we interpolate
first and then perform the multiplication.

For the evaluation, XSH must be provided at runtime because it depends on the
incident angle ωi. Our solution is to split the BRDF into a diffuse and a specular term
and to solve the integral for two different SH projections XSH . In the diffuse case,
this is ( ρπ cos θr) 7→ DSH , where DSH is the projection of a scaled cosine lobe which
is aligned in the direction of the surface normal n. The factor ρ/π is the reflectance
defined by the material. Similarly, the function for the specular part is defined as
(n+1

2π cosn θ) 7→ SSH , where θ is the angle between incident light and the half vector
instead of n, and (n+ 1)/(2π) is used to normalize the lobe to a volume of one.

To compute the SH coefficients for DSH and SSH , we need to integrate over a
directed half space which is possible but complex. It is also possible to integrate
over an upward-oriented cosine lobe and rotate the result later. Since the lobe is
rotationally invariant around the up-axis, only projections on zonal harmonics y0

l are
non-zero. For SSH these are

c0
l =

n+ 1

2π

∫ 2π

0

∫ π/2

0
y0
l (θ, φ) cosn θ sin θdθdφ. (4)
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The rotation of the zonal harmonic into some direction d is obtained as (see zonal
harmonics in [Sloan 2008]):

cml =

√
4π

2l + 1
c0
l y
m
l (d). (5)

Thus, the cosine lobe evaluation results in a single constant factor per band which
is multiplied before the SH evaluation in direction d. Those factors are given in
Appendix B for SSH . For DSH , the same can be done by removing n and replacing
the normalization factor from Equation (4) with ρ/π.

We also experimented with the HSH representation for the caches in the light map.
Unfortunately, directly integrating the cosn lobe oriented in an arbitrary direction is
difficult for HSH. We found no closed solutions for n 6= 1 or more than three bands.
Also, rotations are not feasible. In the original formulation of the HSH basis, Gautron
et al. [2004] suggest the rotation through an intermediate SH representation. However,
this is impractical in our case since the rotation has to be done for each pixel during
shading. Elhabian et al. [2011] used numerical integration at this point, which also is
unfeasible at runtime. Hence, we had to discard the HSH basis for light maps.

4. Implementation Details

While the previous section provided the overall idea of the algorithm, we now provide
an insight to details and optimizations.

4.1. Flux in Surfels and Hierarchy

In the derivation of lighting formulas in Section 3.1, the radiosityBs is computed from
the radiance Ls and stored for the surfels. However, using Bs leads to an overhead
in the pull step, because radiosity is defined as flux per area and an area weighted
average is necessary. Thus, the area must be fetched repeatedly during pulling.

Instead of radiosity, flux Φ is accumulated directly without averaging. It turned
out that propagating flux through the hierarchy is 1−2.5 ms faster, because the pulling
is limited in bandwidth. Therefore, Bs must be converted to flux Φs by multiplying
with the surfel’s area during illumination of the leaves. Since leaf surfels are of the
same area, this is a constant factor. During cache lighting, Φs must be converted back
to radiosity by a division by the sender’s area which is the sum of all surfel areas in
the respective subtree. We incorporate this area by scaling FSH accordingly during
precomputation and hence do not add any costs at runtime. The scaling of FSH is
allowed due to distributivity of the sum in the SH evaluation.

4.2. Surfel Placement

The surfels are the primary samples which are illuminated during runtime. Opti-
mally, they have a Poisson disc distribution over all meshes. Gaps between surfels
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(a) Xorshift RNG (b) Halton-sequence (c) Halton-sequence
with relaxation

Figure 3. Differently generated distributions of 30000 surfels.

are allowed, but it must be assured that the area of all surfels equals the area of the
geometry. The quality of this step has a noticeable impact on the final results.

To distribute surfels, each triangle is sampled proportional to its area. The area of
too-small triangles is accumulated until their combined area is sufficient to spawn an-
other surfel. Using a low-discrepancy Halton sequence [Halton and Smith 1964] im-
proves the distribution compared to a Xorshift random number generator [Marsaglia
2003] as shown in Figure 3. To further increase the quality, we subsequently relax the
distances. For that, the surfels are repelled from their nearest neighbors iteratively,
allowing only movements along the tangential plane.

There are other approaches to target this problem, such as the dart throwing in
[Cline et al. 2009]. Most methods require a geodesic distance to achieve the Poisson
disc distribution over the surfaces. These methods could be evaluated in future work.
Our approach is simpler and faster, and we do not expect a qualitative gain through
more complex algorithms compared to the results in Figure 3(c).

4.3. Surfel Clustering and the Tree Metric

The next task in the precomputation is to build a hierarchy of the samples. This is re-
quired for the hierarchical light transport simulation, where each cache is illuminated
only by a cut of limited size through that hierarchy.

It is possible to quickly build a kd-tree or a similar space partitioning tree over the
surfels. Nevertheless, we considered hierarchical agglomerative clustering (HAC) as
a higher quality option to achieve more meaningful sender patches. We implemented
the generic approach from [Müllner 2011] with a custom distance metric:

d(a, b) =
‖xa−xb‖2

‖xmax−xmin‖2
+ Cn(1−〈na,nb〉) + Cb

|Aa −Ab|
max(Aa, Ab)

.

The most important term is the squared distance between the cluster centers x to
create compact clusters. It is normalized by the maximum scene extent. The next
term includes the deviation of normals n to avoid the early clustering of opposite
faces (e.g., two sides of a wall). Further, we added a penalty on the tree balancing,

16

http://jcgt.org


Journal of Computer Graphics Techniques
Precomputed Illuminance Composition for Real-Time Global Illumination

Vol. 5, No. 4, 2016
http://jcgt.org

where the area A is a direct measure of the number of leaves since all surfels have
the same size. The balancing is important for the performance of the pull step during
runtime. The two factors Cn and Cb weight the importance of the normal and the
balancing term. Values of Cn=0.1 and Cb=0.02 worked well for all our scenes.

4.4. Cache Placement

For dynamic objects, caches are placed in a uniform grid with manually set resolution.
Placing caches for the light map is more involved. All texel centers must be found on
the geometry to be placed in 3D. Therefore, we iterate over all light-mapped triangles
in the scene once and locate the texel centers. For a triangle, the bounding rectangle is
determined in texture space, and each of the texels is tested if it is within the triangle.
If so, the position of the cache is computed by the texel’s position within the triangle.
Texels in empty areas of the light map are not filled by this process. As mentioned,
we duplicate probes along texture seams by dilation to allow linear interpolation.

4.5. Link Generation

The target of link generation is to determine the nL most important sender patches
with respect to a chosen cache. Figure 4 visualizes the results for a single probe. Note
that surfels from the right wall are excluded since they are invisible to the probe.

We use the summed solid angle of all clustered surfels as the metric for the im-
portance, since the lighting conditions are not known in advance. First, the term cs0
(Equation (2) for the constant basis function) is computed per surfel and summed up
along the hierarchy. Note that this term includes visibility, and invisible parts of the
scene become unimportant. Afterwards, links are chosen top down by refining the

Figure 4. Linked surfels for a single probe on the right wall.
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cluster with the largest value iteratively until a cut of nL elements is found. This cut
covers the entire visible part of the scene.

All links for a cache are stored sequentially such that the cache index times nL
gives an offset to the first link. A link contains the target cluster index and either the
form factor FSH or a direction vector plus a scalar form factor (see Section 4.6).

4.6. Alternative Link Precomputation

In Section 3.1, FSH was precomputed as a set of SH coefficients. Consequently, a lot
of values must be stored and fetched during cache lighting. As stated, it is also possi-
ble to store a direction and a scalar transport factor instead. Then, the projection can
be computed at runtime. This requires a different projection technique from Monte
Carlo sampling. With a single projection, a larger solid angle must be projected di-
rectly.

For a surfel, we approximate its solid angle projection to the zonal harmonics
with an integration over a cone with an half opening angle of α. Afterwards, the SH
is rotated into the direction of the surfel using Equation (5) again.

c0
l (α) =

∫ 2π

0

∫ α

0
y0
l (θ, φ) sin(θ)dθdφ (6)

The results of that integral for up to 8 SH bands are given in Appendix C. All other
base functions are symmetric to the up axis and yield 0 if plugged into the equation.
All terms depend on α in the form of cosx α terms, so we precompute cosα and store
these values per link.

The runtime projection optimization is a bit less precise, because the sampling
integration preserves more details in theory. However, it still yields results very sim-
ilar to those before. Also, it reduces memory consumption considerably and slightly
increases performance, too.

4.7. Memory Layouts

There are three categories of data: the hierarchy of surfels, the linkage between surfels
and caches, and the caches themselves. All need to be optimized for the access in
different pipeline steps. To allow caching for all read accesses, we use textures and
texture buffers, respectively. A texture buffer allows 1D texture access for up to 128M
texels and write accesses if bound as shader-storage buffer. Figure 5 shows the details
of our memory management. The shaded yellow boxes also contain the used texture
formats and dimensions of the texture buffers.

The buffers (1), (2), (3), and (4) all encode different parts of the surfel data. The
number of leaf surfels is nS . Since only leaves are illuminated, buffer (3) is smaller
than the other three, which store information for hierarchical cluster surfels as well.
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Figure 5. Buffer layouts and accesses in the pipeline. Yellow blocks depict data and blue
ones depict the pipeline steps with numbers from Figure 2. The data in the top row is stored
in read-only texture buffers whereas all other buffers are written as shader-storage buffer and
read as texture buffer/texture. The shaded yellow boxes show texture format and size. The
interpretation of texels is given above/below.

The HDR colors in buffers (3) and (7) are manually encoded in 32 bits with a shared
exponent of 5 bits and 9 bits per channel.

To illuminate caches, either buffer (5.1) or buffer (5.2) is consumed together with
the flux in buffer (7). The size of the buffers in (5.x) depends on the number of caches
nC times the number of links per cache nL. In the case of runtime projection, the
surfel index, the light transport factor f , the cone opening angle cosα (see Section
4.6), and the direction to the surfel (compressed in polar coordinates) are required per
link. Otherwise, all l2 SH coefficients must be provided per link. To reduce memory
requirements and bandwidth in general, we store all SH coefficients as 16-bit floats
(half). However, this results in a bad alignment for an odd number of coefficients. We
solved this by storing two links in a single sequence (see buffer (5.2)), requiring an
even numbers of links.

The final cache coefficients of LSH are stored into three 2D and 3D textures for
fast hardware interpolation between caches in the illumination step. Since there are
no 3D texture arrays, one of the dimensions must be used to address different sets
of coefficients manually. Each of the textures is monochromatic to allow a different
number of SH coefficients per channel. For details see the next section.

In the case of the light map, caches must be duplicated among gaps in the map
(UV islands). One option would be to redundantly compute all those caches. Instead,
it is also possible to store the results in a temporary buffer (9) and do an additional
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copy step, which we found to be faster. For that reason, texture (6) contains an index
to the temporary buffer (9) for each texel of the light map.

4.8. Chrominance Compression

YCoCg is a color space by [Malvar and Sullivan 2003]. It has good decorrelation
properties and is fairly easy to transform from and to RGB:

Co = (R−B)/2 t = Y − Cg
t = B + Co G = Y + Cg

Cg = (G− t)/2 B = t− Co
Y = t+ Cg R = t+ Co (7)

Chrominance compression can be used for the final caches as in [Vardis et al. 2014].
In Figure 5, this corresponds to textures (8) and (10). For those, two chrominance
textures (CoCg) can be stored with fewer coefficients than the third with luma Y.
This reduces the number of writes during cache lighting and the number of fetches
during shading. Since the link buffer is monochromatic and it does not matter if
surfel lighting is stored in RGB or YCoCg, the other textures are not compressed in
this way.

5. Evaluation

First, we will compare our method to other algorithms and the unbiased solution.
Afterwards, the performance is benchmarked and time-quality tradeoffs are shown.

5.1. Comparison to Other Techniques

Table 1 summarizes the most important properties of related illumination algorithms.
Methods which rely on precomputations are naturally faster but more limited for dy-
namic content. Here, only CRC has a similar performance because of their advanced
cache allocation optimization. C-LPV, VCT, and LightSkin can perform at real-time
frame rates in medium quality. VCT offers the best quality of all compared methods

Technique Ind. diffuse Ind. specular Dyn. lights Dyn. objects Performance

Ours n (progressive) FFF full receive only FFF

VCT [Crassin et al. 2011] 1* FFF good (rsm) full FFF

C-LPV [Kaplanyan and Dachsbacher 2010] 1* FFF good (rsm) full (coarse) FFF

CRC [Vardis et al. 2014] n (coarse) FFF good (rsm) full (medium) FFF

PRT [Sloan et al. 2002] n FFF only environmental no FFF

LightSkin [Lensing and Broll 2013] 1 FFF good (rsm+) full (coarse) FFF

Table 1. Comparison to other real-time global illumination algorithms. (* a progressive
multibounce is possible.)
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(a) Light propagation volumes (b) Voxel cone tracing

(c) Our method (d) Ground truth

Figure 6. Comparison of indirect diffuse lighting (multiple bounces). Image (a) taken from
[Kaplanyan and Dachsbacher 2010], (b) and (d) taken from [Crassin et al. 2011].

Figure 7. Comparison of a textured area light (four asterisks and a ring). Left: Ours with 40k
surfels, 13785 caches, and many bounces at 195 fps. Right: path-traced 62k samples/pixel,
16 bounces, >1h. Artifacts are visible in the shadow details, on the two objects illuminated
by the grid and at edges of the box.
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if using a large sparse octree as originally done. However, the implementation then
becomes slower and achieves only interactive frame rates.

Certainly, all of the techniques support at least one bounce of diffuse lighting.
The qualitative comparison of Figure 6 shows that our technique is much closer to the
ground truth than LPV and VCT. Our approach does not suffer from light bleeding
due to the light map caches which are fully aware of the geometry.

Only CRC and PRT already include solutions for multiple bounces. CRC is pro-
gressive, as is our algorithm, but uses a coarse approximation for subsequent bounces.
In contrast, our technique uses the same approximation quality for all bounces. In C-
LPV and VCT it is theoretically possible to introduce indirectly illuminated geometry
into the voxel volume to extend the approaches towards multiple bounces.

Almost all other algorithms use reflective shadow maps to sample direct illumina-
tion. Therefore, dynamic lights are supported, but computation time increases rapidly
with the number of light sources. In our solution a fixed number of surfels, nS , is lit
using a standard rendering pipeline. Hence, we are able to support arbitrary lights at
the native performance of the rendering engine.

The ability to use arbitrary light sources also includes area lights which can have
color variations and animations using textures. The first bounce indirect light includes
the direct light of area light sources including their shadow. Figure 7 compares our
algorithm to a path-traced ground truth. It shows a high level of agreement at first.
However, the cache interpolation leads to some artifacts. Most of them are missing
shadow details (ceiling) and artifacts along edges, where the placement of caches
is a problem. Also, the Bunnyduck has perceptibly different shading due to the SH
compression and cache interpolation.

We also experimented with specular materials. Figure 8 shows the results using
SH representation with two to eight bands including performance values on GTX980.
The runtime projection allows more bands and is faster, but it also results in more
errors as image (m) emphasizes. With the setting used, it is not possible to have
more than seven bands with the full SH link buffer, because the number of texels
then exceeds the 128M limit. The figure also shows the time-quality trade-off of
chrominance compression. When using half as many bands for CoCg, the difference
to full shading is barely visible but ≈ 31% faster. The performance gain is smaller
if using fewer bands in general, because everything up to the cache illumination is
performing the same operations. For details see Section 5.3.3.

Most other techniques could be extended to specular lighting at a similar quality,
so this is not a specific advantage of our algorithm. The only requirement for specular
sampling is to store incident radiance to be able to sample into arbitrary outgoing
directions afterwards. Here, VCT achieves reflections for higher exponents at the cost
of a highly detailed octree and fine-grained cone marching. LightSkin also achieves
slightly higher coefficients by the use of local virtual lights which are created for
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(a) 2 SH bands (5.3 ms, 41.2
MiB)

(b) Runtime projected 2 SH
bands (5.2 ms, 41.2 MiB)

(c) CRC 8:2 SH bands (8.3 ms,
43.3 MiB)

(d) 3 SH bands (6.3 ms, 67.5
MiB)

(e) Runtime projected 3 SH
bands (6.0 ms, 41.8 MiB)

(f) CRC 8:3 SH bands (8.8 ms,
43.8 MiB)

(g) 4 SH bands (7.3 ms,
104.3 MiB)

(h) Runtime projected 4 SH
bands (6.2 ms, 42.8 MiB)

(i) CRC 8:4 SH bands (9.3 ms,
44.5 MiB)

(j) 6 SH bands (12.0 ms, 209.7
MiB)

(k) Runtime projected 6 SH
bands (8.9 ms, 45.6 MiB)

(l) CRC 8:6 SH bands (10.8 ms,
46.6 MiB)

(m) Difference (j) and (k) (n) Runtime projected 8 SH bands
(13.4 ms, 49.5 MiB)

Figure 8. Glossy reflections with a Blinn-Phong-exponent of 30 at a resolution of 1920×1080

with nC = 10585, nL = 254 and nS = 128k. The indirect lighting is amplified by a
factor of two to emphasize the differences. The alternative implementation is similar, but
not equal as the difference image (m) shows. All other difference images look very similar
and are therefore not shown. Image (n) shows the results for 8 band SHs using runtime
projection. Without the optimization only seven bands are possible due to the link-buffer
size. The rightmost column shows the gain of chrominance compression for full eight-band
runtime projection.
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known reflection directions. However, the model of known reflection directions does
not apply to normal-mapped geometry.

The accompanying video (see the supplementary materials at http://jcgt.
org/published/0005/04/02/supplemental.mp4) shows the illumination
of dynamic objects. We are able to light those objects without including their indirect
shadows or reflections. VCT, LPV, and CRC use voxelized blocker volumes which
can be generated in real-time. This could be included in our technique, since for each
link the direction as well as the solid angle are known, and cones can be traced, too.
An advantage is that only the dynamic objects need to be voxelized. However, since
voxelization is not a native part of our technique, it is considered as an extension and
therefore not implemented. In contrast, LightSkin explicitly projects blocker proxies
to generate indirect shadows. This could also be implemented by a cone-sphere test
in our algorithm, but we consider providing the proxies more complicated and less
effective than the voxelization approach.

5.2. Failure Cases

First of all, there are common artifacts of light maps and interpolations in grids. Most
noticeable are misplaced caches as in Figure 9(a). This can be avoided by better light
mapping of the geometry or back-face culling during the ray-cast visibility tests.

Also, there are algorithm specific problems, which are hardly visible under usual
lighting conditions. In Figure 9(b) only a few surfels are lit directly. Neighbored
caches use different approximating links due to local decisions in the link generation
step.

Light bleeding occurs in two cases. Besides interpolation in the grid the clustering
of senders can introduce this artifact (Figure 9(c)). Caches in the upper corridor are
linked to clusters which partially contain surfels from below. However, this effect is

(a) (b) (c)

Figure 9. Possible artifacts of the algorithm. (a) Light map caches (black ones) are placed
behind other geometry. This can be fixed by enabling backface culling during cache precom-
putation; (b) A small spotlight (top right) reveals discontinuities in linkage on the floor; (c)
Single bounce light bleeding (amplified by ×4096): the upper corridor should be black. The
cause is that the hierarchy can merge clusters which cannot see each other.
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small and not perceptible if multibounce is enabled or if there are more lights in the
scene.

5.3. Performance

Table 2 lists the costs of the individual steps as well as the complete frame time on
different machines for a high- and a moderate-quality setup. We also include a CPU-
reference implementation, because we expected that some steps scale better on the
CPU than on the GPU. The timings for the upload are not listed, but they lead to an
additional overhead which is included in the total frame time of the CPU experiments.

The time for Surfel Lighting is rather small compared to all other steps. In almost
no case is the CPU implementation faster than the GPU implementations. Due to its
recursive nature, only the pull step achieves similar or better CPU timings on some
hardware configurations. However, the overhead for upload and download of the sur-
fel hierarchy makes a hybrid solution pointless. The cache lighting costs are moderate
and can be controlled by parameters which are explained in detail later. Shading is
comparably expensive, but the timings in Table 2 also include rasterization and direct
lighting. Hence, global illumination is not responsible for all of the costs.
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GTX 9801 0.21 0.09 1.72 2.27 2.59 7.17
GTX 850M1 0.85 0.47 8.88 11.1 9.96 33.3
K5100M1 0.58 0.25 11.0 15.7 6.76 34.9
GTX 9802 0.21 0.04 0.38 0.58 1.99 3.65
GTX 850M2 0.85 0.21 1.27 3.09 7.93 15.3
K5100M2 0.58 0.10 1.26 2.84 5.32 11.26

i7-4790S1 – 8.12 5.00 116 – 131
i7-4510U1 – 7.06 8.04 148 – 198
i7-4790S2 – 4.87 1.13 11.5 – 21.1
i7-4510U2 – 2.57 1.34 28.0 – 33.8

Table 2. Performance breakdown in ms for two different settings at a resolution of
1920×1080 for the sponza scene.
1 settings of Figure 8 (g): nC=10585, l=4, nL=254, nS=128k.
2 moderate settings: nC = 10585, l = 3, nL = 128, nS = 32k.

5.3.1. Resolution Dependency

Our technique scales well with larger resolutions. We experimented with resolutions
of 960×540, 1920×1080, and 3840×2160 with setup one. On the GTX 980, the
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shading with indirect illumination takes 0.99ms, 2.59ms, and 8.84ms, respectively,
and 0.67ms, 1.41ms, and 3.51ms without. All other steps are independent of the
resolution.

5.3.2. Parameter Space

In total, four parameters influence the performance and quality. Those parameters are
the number of SH bands l, the number of caches nC , their number of links to the
senders nL, and the number of surfels nS . All of these parameters are analyzed in
more depth here.

The two parameters nS and nL have similar effects on the quality as they both
reduce the detail of the light transport itself. In Figure 10, the influence of both
parameters is visualized. As expected, they have an almost proportional impact on the
respective pipeline step. Thus, the surfel illumination scales well with an increasing
nS , whereas the pull gets more expensive more quickly.

The first column of images in Figure 10 shows that 32 links are not sufficient. In
general, reducing nS is more stable than reducing nL. More links make the technique
robust against variance in the surfel density. More surfels increase details close to the
cache, but lead to a degradation of far links when nL is not increased simultaneously,
because more links are used for the close details. Since details are blurred through the
SH compression anyway, it is better to use a smaller surfel density in general.

The parameter nC is set by the grid and the light-map resolution. Using more
caches reduces the artifacts due to interpolation (e.g., shadow bleeding) and increases
the details in indirect shadows. On the other hand, cache lighting becomes the most
expensive step in some configurations (e.g., see Table 2 K5100M1). Still, cache den-
sity should be kept as high as possible. Here, a view-dependent adaptive choice of the
cache density would increase quality and performance at the same time. However,
caches outside the view frustum cannot be rejected if multiple bounces of light are
desired.

Reducing the number of SH bands l decreases the memory consumption and costs
of the cache illumination and the shading stage. Higher number of bands preserve
more details as is visible in Figure 8. Figure 11 shows the performance impact of pa-
rameter l on different passes with and without optimization. Most steps are invariant
to the number of SH-bands as the blue bars show. The shading costs grow quadrati-
cally as the number of SH coefficients l2. For fewer bands, this is barely noticeable,
because direct lighting and other rendering costs hide the work. The cache lighting
is the only step that performs differently if runtime projection is enabled. Without
the optimization, its costs grow faster than that of the shading. With RTP it changes
much slower from 0.78 ms for two bands to 1.95 ms for eight bands. Surprisingly,
three and four bands (0.99/1.02 ms) as well as five and six bands (1.29/1.31 ms) have
nearly the same timings. This is caused by register pressure from the l2 temporary
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Number of Surfels (Timings for Surfel Relighting+Pull)

16k (0.03 + 0.20 ms) 32k (0.04 + 0.38 ms) 64k (0.06 + 0.76 ms) 128k (0.08 + 1.72 ms)

32

0.22 ms 0.24 ms 0.25 ms 0.25 ms

64

0.41 ms 0.43 ms 0.45 ms 0.49 ms
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Figure 10. Influence of the two parameters surfel-count nS
and links per cache nL on performance and quality. A larger
nS takes more time for surfel relighting as well as pull and re-
duces cache efficiency of the cache relighting (see overlayed
numbers). More links increase time for cache relighting pro-
portionally.
In general fewer links result in a less stable light transport
(top rows) while fewer surfels reduce these artifacts at the
costs of details and energy preservation (left column).
The images in the last row show the surfel distribution for the
respective column.

Ground Truth
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Figure 11. Influence of the number of SH bands l on the performance for the configuration
in Figure 8. The right bars show results for runtime projection.

5.3.3. Chrominance Compression

The influence of chrominance compression on the memory requirements is detailed in
Section 5.3.4. A qualitative comparison can be found in Figure 8. Table 3 compares
the performance gain of different compression settings. In most cases there is a con-
tinuous small time-quality tradeoff. However, in two configurations (3:4 and 7:8), the
compression overhead crosses a boundary with a severe performance penalty leading
to even slower results. We found that two bands for chrominance are usually too few
and that the difference between three and four bands is still perceptible. Hence, using
the compression with our algorithm should only be considered for higher number of
bands (6+). Otherwise, the quality loss is not worth the small performance gain.

SH-bands Y
2 3 4 5 6 7 8

2 2.48 2.69 2.95 3.59 3.78 4.50 5.35
3 - 3.21 3.41 4.01 4.07 5.22 5.83
4 - - 3.33 4.14 4.39 5.35 6.31
5 - - - 4.69 5.67 6.26 6.78
6 - - - - 5.95 6.94 7.80
7 - - - - - 7.61 11.89SH

-b
an

ds
C

oC
g

8 - - - - - - 10.35

Table 3. Influence of chrominance compression on the performance (GTX980) with runtime
projection enabled. Times are given for Cache-Lighting + Shading in ms. The main diagonal
shows times without any compression (RGB mode).

5.3.4. Memory Consumption

The memory consumption of our algorithm is determined by three factors: surfels,
caches, and links. Figure 5 gives an overview of all stored buffers and Table 4 extends
this by an example.
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Instance Count1 Total

Surfels (3) 12 B 128k 1.46 MiB
Hierarchy (1) (2) (4) (7) 34 B 256k 8.30 MiB
Caches (8) (10) 96 B 18.7k 1.71 MiB
Link SH2/RTP (5.1) 12 B 2689k 30.08 MiB
Link SH4 (5.2) 36 B 2689k 92.31 MiB
Light map Indices (6) 4 B 16k 0.06 MiB
LM Intermediate (9) 4 B 132k 0.51 MiB

Table 4. Memory consumption of individual components for the high quality settings.1 The
numbers in column one reference the textures of Figure 5. Using the runtime projection for
links (Section 4.6) requires the same memory as two-band SH but supports a dynamic band
number.

Textures (1), (2), (4), and (7) all scale with 2nS and (3) with nS . Hence, the
memory consumptions dependent on surfel count is nS · 80 bytes. For 128k surfels,
this total is 9.77 MiB.

The link buffer has different sizes for the two proposed implementations. Without
runtime projection it takes 4nCdnL/2e(2+ l2) bytes and 12nCnL bytes with the opti-
mization. For Sponza setting 1 these totals are 92.31 MiB and 30.8 MiB, respectively.
Chrominance compression does not reduce this footprint as links are monochromatic
anyway.

The final cache textures (8) and (10) have 8 bytes per texel and dl2/4e layers
which leads to 24R(dl2Y /4e + dl2CoCg/4e) bytes in total where R (resolution) is the
total number of texels. For our Sponza setting 1 R is 24 × 8 × 12 + 128 × 128 =

18688 resulting in 1.71 MiB memory consumption. The number is different from
nC = 10585 because of redundancy in the light map after copying. I.e., nC is the
number of unique caches which need to be computed. In addition, the intermediate
buffers (6) and (9) for the light-map generation take 64 KiB and 517.6 KiB. Therefore,
the size of buffer (9) depends on the number of caches in the light map which is scene
dependent. If all 128×128 texels have their own cache, 1 MiB is required, but in that
case copying is useless and both buffers (6) and (9) could be removed.

In Figure 8, the total memory consumption is given in the captions of all shown
settings. Without changing nS , nC , or nL (only changing SH bands l), the require-
ments range from 41.2 MiB to 209.7 MiB where values around 45 MiB are necessary
for practical settings.

The total memory consumption for the high-quality setup in the Crytek Sponza
scene is 104.3 MiB and 32.2 MiB for the moderate setup. This is comparable to other
techniques like VCT and C-LPV. If SHs are not stored and link projection is done at
runtime, the costs for the two setups become instead 42.8 MiB and 19.3 MiB, which
is less than the requirements of comparable techniques.
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Most of the costs result from the links. The costs can be reduced by decreasing
one of the parameters nL, or l, nC or by projecting at runtime. The first three options
all reduce quality significantly, whereas the runtime projection is visually similar (see
Figure 8 and supplied video in the supplementary materials) and allows more bands
without higher memory costs.

6. Conclusions and Future Work

We proposed a new algorithm of cache-based indirect lighting that relies on pre-
computations. Compared to similar methods, this algorithm is faster and requires
less memory. It natively supports any type of dynamic lighting, including mul-
tiple diffuse indirections at very low costs. In particular, the runtime projection
implementation requires few memory and computation costs and should always be
preferred.

We also experimented with higher-order SHs for better glossy reflections. Com-
pared to the necessary computation cost, the visual gain above six bands is small.
Using chrominance compression can help to lower the costs for a higher number of
bands. However, for the usual numbers of three or four bands, it does not improve the
performance much.

Due to the precomputations, dynamic objects can only be shaded and do not cast
indirect shadows or reflect light back into the scene. The missing shadows and reflec-
tions of dynamic objects could be included by a voxel cone tracing approach. This is
possible with a voxelization of the dynamic parts only because shadow and reflections
of everything else are already included.

Another possible optimization is to reduce the number of caches dependent on
the view. One option is the dynamic cache allocation from [Vardis et al. 2014] and
another option would be the use of a cascaded volume. In any case, all caches
must have precomputed linkage, but it is not necessary to illuminate and use all of
them.

In addition to sparse cache selection, a dynamic link selection is interesting. Cur-
rently only geometric visibility is considered. The albedo or the current lighting is
not included. It is conceivable that the number of links could be reduced based on the
current flux at runtime.
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A. Projecting the Transport Factor to SH

In Section 3.1, we formulated the light transport depending on an SH factor which
primarily contains the visibility of a sender cluster:

cs,i =
1

π

∫
Ω

yi(ω)Vs(ω)dω.

Now, the integral can be solved through Monte Carlo sampling. Therefore, the inte-
gral is replaced by a sum over N samples and each sample is weighted by its inverse
sampling probability:

cs,i =
1

Nπ

N∑
j=1

1

p(ωj)
yi(ωj)Vs(ωj).

For a uniform sampling on a sphere, the probability is p = 1/4π:

cs,i =
4

N

N∑
j=1

yi(ωj)Vs(ωj). (8)

Equation (8) computes the correct solution, but casting N rays is computationally
expensive. Especially, if the target sender only covers a small fraction of the sphere,
many rays yield zero. We are able to decrease this overhead by casting only rays into
the direction of the sender patch. To incorporate this into the Monte Carlo integration,
we can weight the result with the probability to hit the patch if it is not occluded, I.e.,
we multiply the result with the solid angle of the sender divided by the full spherical
angle. Since we know each other ray would simply add zero to the sum, this has the
same effect as using a larger N :

w(ω) =
As〈ns, ω〉+

d2
· 1

4π
.

Note that the weighting factor w depends on the sampling direction, as the distance d
and the angle to surface θs depend on it. Inserting this into Equation (8) and replacing
the samples by the subset N ′ into the direction of the sender yields the final result
(Equation (2)):

cs,i =
As
N ′π

N ′∑
j=1

yi(ωj)Vs(ωj)
〈ns, ωj〉+

d2
j

.

B. Cosine Lobe Integration on SH

As explained in Section 3.2, the integration of a camped cosine lobe and a function
in SH representation can be done over projection to zonal harmonics (Equation (4))
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and an SH rotation (Equation (5)). Equation (5) has the structure of a usual sampling
yml (d) multiplied by a factor s which depends on l and n only:

sl(n) =

√
4π

2l + 1
c0
l . (9)

Hence, there is a single factor per band depending on the exponent n which can be
computed at runtime and inserted to the normal SH lookup. Solving the integral for
c0
l and inserting the result into Equation (9) gives

s0(n) = 1,

s1(n) =
n+ 1

n+ 2
,

sl(n) = sl−2(n)
n+ 2− l
n+ 1 + l

.

Finally, integrating the specular cosine lobe which is aligned in direction d is
computed as

cml = sl(n)yml (d).

C. Zonal Harmonics for Runtime Projection

In Section 4.6 small area segments are projected to the zonal harmonics by Equation
(6). Each cone is parameterized by the half-open angle α. The results for the first 8
bands are

− 2π(cosα+ 1);

− π(cos2 α+ 1);

− π(cos3 α+ cosα);

− π

4
(5 cos4 α− 6 cos2 α+ 1);

− π

4
(7 cos5 α− 10 cos3 α+ 3 cosα);

− π

8
(21 cos6 α− 35 cos4 α+ 15 cos2 α− 1);

− π

8
(33 cos7 α− 63 cos5 α+ 35 cos3 α− 5 cosα);

− π

64
(429 cos8 α− 924 cos6 α+ 630 cos4 α− 140 cos2 α+ 5).

Given that cosα is a precomputed constant, all terms are simple polynomials
which can be evaluated quickly. Then, the resulting values are rotated into the correct
direction using Equation (5).
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