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Abstract

This document summarizes the derivation of formulas from the main paper. Also, additional experiments are provided to justify
the decisions in the paper.
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1. Bounds on the Microfacet Distribution D

Microfacet distributions are also known as Normal Distribution
Functions (NDF). The projected area of all facets to the geometric
normal n is the unit area. Thus they are normalized to∫

Ω

D(h)〈h,n〉dωh = 1.

Variations in this normal distributions are the main reason for va-
riance in the microfacet BSDF models. In the following the upper
bounds for the the three most common NDFs are derived, which
turns out to be very simple.

1.1. GGX

The GGX distribution [TR75, WMLT07] is defined as

D(h) = 1

πα2
(
〈h,n〉2 + 1−〈h,n〉2

α2

)2 (1)

and has its maximum at h = n. Since α < 1 the right of the two
terms in the denominator grows faster than the left one. This leads
to a smaller value of the entire function. The term is zero for h = n
and thus the maximum is found there. Inserting one for the dot
products gives 1/πα

2 as the maximum value.

1.2. Beckmann-Spizzichino

The Beckmann-Spizzichino distribution [BS63] is defined as

D(h) = 1
πα2〈h,n〉4

e
〈h,n〉2−1
α2〈h,n〉2 . (2)

It is usually written with −tan2(θh)/α
2 in the exponent which is

equivalent to the above formulation applying some trigonometric
identities.

Using derivation we can find its extrema at

〈h,n〉=
{

1,− 1√
2α

,
1√
2α

}
,

where the second one can be ignored, because it only happens for
invalid pairs of h and n where the two vectors are on different sides
of the surface.

The first extremum is a maximum for α ≤ 1/
√

2 and a local mi-
nimum otherwise. I.e. for α≤ 1/

√
2 we have the same maximum at

h = n as before.

The third extremum becomes the global maximum for α > 1/
√

2

as is also visible in Figure 1 (left). Inserting 〈h,n〉 = 1/
√

2α into
Equation (2) gives us its value of

4α
2eα

−2−2/π (3)

which cannot be solved for α in a closed form. To find an upper
bound we first analyze the behavior for limα→∞. This results in
e−2 for the exponential term which means that the function’s grow
is governed by the quadratic term α

2. To find a function which
is always greater than Equation (3) we need to add the value of
Equation (3) at α = 1/

√
2 (being 2(e2−1)/πe2) as offset leading to

D̂ =
4α

2 +2(e2−1)
πe2 (4)

as an invertible bound for α > 1/
√

2. It is also possible to use
4α

2/πe2 directly without the offset term. While not being a strict
bound then, it better fits Equation 3 for larger values.

In practice α is often restricted to [0,1] anyway. In that case re-
gularization for α ∈ [1/

√
2,1] does not make sense (α = 1 leads to

the global minimum of D over all α) and one can use the very same
bound 1/πα

2 as for all previous models, without paying attention to
the shifting maximum. However, for unrestricted α > 1, which is
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Figure 1: The Beckmann-Spizzichino distribution with varying roughness parameters (left). On the right the value of its maximum is shown
with respect to α.

just fine for this model, regularization based on Equation (4) beco-
mes applicable again.

1.3. Blinn-Phong

Usually the Blinn-Phong NDF is parametrized with an exponent n.
By setting its normalization term (n+2)/2π equal to the normaliza-
tion term of the other distributions 1/πα

2 we can express n depen-
dent on α and get

D(h) = n+2
2π
〈h,n〉n = 1

πα2 〈h,n〉
(2/α

2−2) (5)

It is trivial to see that the maximum is at h = n because in all
other cases the dot product will become smaller. At this maximum
the dot product is one and therefore the entire right side becomes
one leaving only 1/πα

2.

2. Bounds on the Microfacet Shadowing G

The next important part of a microfacet model is its self-shadowing
term G, which we want to bound together with the denominator
|〈�w,n〉〈�w,n〉|.

In the V-cavity model [TS67] the shadowing is independent of
the roughness parameter and does not necessarily compensate for
the cosine denominator at grazing angles. Thus, if using the V-
cavity model, our best option is to replace G/|〈�w,n〉〈�w,n〉| with
the constant one. The resulting bound is not a strict upper bound
which would be infinity in this case.

Using the Smith model [Smi67], where the shadowing is com-
posed of two distribution-dependent functions G = GiGo, the terms
Gi/|〈�w,n〉| and Go/|〈�w,n〉| are finite in the limit |〈w,n〉| → 0.
For the GGX distribution [WMLT07] the result is 2/α and for the
Beckmann-Spizzichino distribution [BS63] it is 2

√
π/α.

The Cosine model does not have a closed form term. As an ap-
proximation the same term as for the Beckmann distribution can be
used [WMLT07].

3. Walter Transmittance Model Refraction Maximization

In Walter’s rough transmittance model [WMLT07]

ρt(
�w,�w) =

D(ht)G(�w,�w)(1−F(〈�w,ht〉))
(ηi〈�w,ht〉+ηt〈�w,ht〉)2

η2
t |〈

�w,ht〉〈�w,ht〉|
|〈�w,n〉〈�w,n〉|

almost everything can be estimated as in the Torrance-Sparrow re-
flection model. Solely the term

η
2
t

(ηi〈�w,ht〉+ηt〈�w,ht〉)2

requires a special treatment. Since we want to obtain a value
independent of the directions, the numerator η

2
t is bounded by

max(ηi,ηt)
2.

For an upper bound we need to minimize the denominator next.
The two direction vectors �w,�w and their half vector ht are con-
nected by Snell’s law

〈�w,ht〉=−sign(〈�w,ht〉)

√
1−

η2
i

η2
t

(
1−〈�w,ht〉2

)
(6)

which allows us to express the denominator depending on a single
cosine (here 〈�w,ht〉). Plugging Equation (6) into the denominator
turns out to have its minima at 〈�w,ht〉= {−1,1}. Both have a value
of (ηi−ηt)

2 with different signs inside the square (which can be
ignored). Therefore, the above term is maximized by

max(ηi,ηt)
2

(ηi−ηt)2 (7)
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4. Estimation of the Regularization PDF

In Equation (13) of the paper we introduced p̂ = (ρ̂/ρ) · p to sim-
plify the implementation of the necessary MIS weight computation.
Here, we show that computing the PDF with respect to α̂ yields the
same result as computing the ratio when using the V-cavity shado-
wing model.

Computing the ratios for the microfacet models (given in Equa-
tions (4) and (5) in the paper) we get:

ρ̂r

ρr
=

ρ̂t

ρt
=

Dα̂(h)Gα̂(
�w,�w)

Dα(h)Gα(
�w,�w)

(8)

where all terms which do not depend on α are canceled trivially.

Using the visible microfacet sampling of Heitz and d’Eon
[Hd14] the sampling probabilities for the two models are

pr(
�w|α) = Dα(h)Gα(

�w)F(�w,h)
4|〈�w,n〉〈�w,n〉|

= Dα(h)Gα(
�w)Br (9)

and pt(
�w|α) = η

2
t Dα(h)Gα(

�w)(1−F(�w,h))
(ηi〈�w,ht〉+ηt〈�w,ht〉)2|〈�w,n〉〈�w,n〉|

= Dα(h)Gα(
�w)Bt (10)

For brevity we can summarize all parametrization-independent
terms (Fresnel and denominators) as Br and Bt , respectively. Then
we can write for both PDFs:

ρ̂

ρ
· p(�w|α) = Dα̂(h) ·Gα̂(

�w,�w)

���Dα(h) ·Gα(
�w,�w)

·���Dα(h) ·Gα(
�w) ·B

=
Gα̂(

�w,�w)

Gα(
�w,�w)

·Dα̂(h) ·Gα(
�w) ·B (11)

For the V-cavity model [TS67], the shadowing is

G(�w,�w) = min(1,G(�w),G(�w))

with G(w) = 2〈n,h〉〈n,w〉/〈w,h〉.

Thus it is independent of α which allows us to cancel the first fac-
tor:

(11), V-cavity⇒ Dα̂(h)G(�w)B

= p(�w|α̂).

Hence, it is possible to evaluate p with respect to the regularized
parameter α̂ instead of computing the fraction of BSDFs explicitly.

For the Smith model [Smi67] Gα(
�w,�w) = Gα(

�w)Gα(
�w) de-

pends on α and the distribution model D and cannot be removed
that easily. However, we can still simplify the term to reduce the

evaluation cost of a practical implementation:

(11), Smith⇒ Gα̂(
�w,�w)

Gα(
�w,�w)

·Dα̂(h) ·Gα(
�w) ·B

=
Gα̂(

�w) ·Gα̂(
�w)

�
��Gα(

�w) ·Gα(
�w)
·Dα̂(h) ·���Gα(

�w) ·B

=
Gα̂(

�w)

Gα(
�w)
·Dα̂(h) ·Gα̂(

�w) ·B

=
Gα̂(

�w)

Gα(
�w)
· p(�w|α̂).

5. Relation of Parameters

In Section 3.4 of the paper we invert the relation between a radius r0
and our parameter τ0. The math behind uses only equivalent trans-
formations as shown below:

τ0 =
1

2π(1− cos(arctan(r0/d))

⇔ 1
2πτ0

= 1− cos(arctan(r0/d))

⇔ 1− 1
2πτ0

= cos(arctan(r0/d))

⇔ 2πτ0−1
2πτ0

= cos(arctan(r0/d))

⇔ tan
(

arccos
(

2πτ0−1
2πτ0

))
=

r0
d

⇔ d tan
(

arccos
(

2πτ0−1
2πτ0

))
= r0

By using tan(arccos(x)) =
√

1− x2/x we can get rid of the trigo-
nometric functions, too:

⇔ r0 = d

√
1−

(
2πτ0−1

2πτ0

)2 2πτ0
2πτ0−1

⇔ r0 = d

√
4π2τ2

0− (2πτ0−1)2

4π2τ2
0

2πτ0
2πτ0−1

⇔ r0 = d
√

4π2τ2
0− (2πτ0−1)2 1

2πτ0−1

⇔ r0 = d
√

4πτ0−1
2πτ0−1

Next, we insert the above r0 in Equation (14) of the paper, yiel-
ding the iteration dependent parameter

rN = r0 ·N−
1/6 = d

√
4πτ0−1

2πτ0−1
·N−1/6. (12)

In the last step we reinsert rN in Equation (15) of the paper:

τN =
1

2π

[
1− cos

(
arctan

(
�d
√

4πτ0−1
2πτ0−1 ·N−

1/6/�d
))] (13)

where d gets canceled out.
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6. MIS for Virtual Merges

The virtual merge strategy samples the BSDF and accepts the con-
nection if the sample is within the allowed cone of the connection
direction. To compute the probability of a successful connection we
need to compute

pacc =
∫

Ω

p(�w,�w)d�w

where Ω is the cone whose solid angle is |Ω|. As done in VCM
[GKDS12, HPJ12] this integral can be approximated with a single
sample |Ω|p(�w,�w). The solid angle can also be expressed by our
parameter with |Ω|= 1/τ. This is because a uniform PDF over the
cone is 1/|Ω| and τ defines the maximum value of this PDF. We get
the approximation

pacc ≈
p(�w,�w)

τ
. (14)

Now, we insert pacc into our path probability. This would re-
quire several changes to the MIS computation function. However,
it is possible to change the stored PDF values at the vertices to have
a modification that is simpler to implement. Since we always need
ratios between path probabilities and not the probabilities themsel-
ves, we can divide the PDFs of all other paths instead of multiplying
with the current one. Hence, if a vertex stored p(�w,�w) before, it is
possible to store p(�w,�w)/pacc instead, because the stored PDF is
used for the path PDF of all but the current path. By inserting Equa-
tion (14) this simplifies to τ.

This means that a connection with a random acceptance is equal
to a continuation of the random walk. The difference is that the
random walk is always accepted while the virtual merge depends
on the solid angle or its alias 1/τ – which is all what remains. Note
that this argumentation is based on the single sample approxima-
tion and not a fundamental law. The implicit assumption of the ap-
proximation is that the sample is within the cone with a probability
proportional to the size of the cone.

7. Convergence

Finally, we want to present a convergence series which shows the
reduction of both noise and bias. In the context of regularization it
is difficult to define a ground truth, as the bias is part of the desired
outcome. Pure specular paths with a point light source and a pin-
hole camera have no contribution in truth. However, they are also
physically implausible. Hence, blurring those light paths virtually
increases plausibility of the result.

Therefore, our reference images are rendered with the same con-
figuration (regularized VCM), but for 10000 iterations. The other
closeups show the 1024th iteration of the four tested configurati-
ons. Due to progressive radius shrinking, the parameter τ becomes
roughly twice as large between 1024 and 10000 iterations.

The graph showing the noise (σ/N) clearly shows a monotonous
decrease of the variance in all four methods. The regularized ver-
sions have more noise due to the shiny effects. However, regulari-
zation increases the similarity to the desired reference as visible in
the right plot. Especially, the BPT profits from the regularization.
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Figure 2: Convergence series demonstrating the reduction of bias and noise if using progressive, selective regularization. The upper row of
the closeups clearly shows a reduction of the blurred shiny effect (i.e. a bias reduction). The lower row demonstrates the noise differences.
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