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ReferenceBidirectional Path Tracing (BPT), 1000 sppPath Tracing (PT), 1000 spp
Figure 1: Wrist watch with many glossy interactions (model courtesy of heraSK). While still noisy, both regularized variants are much more
capable of rendering difficult light paths. The reference was rendered with Vertex Connection and Merging using 155k spp.

Abstract
Today, Monte Carlo light transport algorithms are used in many applications to render realistic images. Depending on the
complexity of the used methods, several light effects can or cannot be found by the sampling process. Especially, specular and
smooth glossy surfaces often lead to high noise and missing light effects.
Path space regularization provides a solution, improving any sampling algorithm, by modifying the material evaluation code.
Previously, Kaplanyan and Dachsbacher [KD13] introduced the concept for pure specular interactions. We extend this idea
to the commonly used microfacet models by manipulating the roughness parameter prior to the evaluation. We also show that
this kind of regularization requires a change in the MIS weight computation and provide the solution. Finally, we propose two
heuristics to adaptively reduce the introduced bias.
Using our method, many complex light effects are reproduced and the fidelity of smooth objects is increased. Additionally, if a
path was sampleable before, the variance is partially reduced.
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1. Introduction

While being around for a long time, Monte Carlo sampling met-
hods become more and more important in computer graphics, be-
cause they are used in a growing number of application areas. On
the one hand increasingly complex methods like Vertex Connection
and Merging (VCM) [GKDS12, HPJ12] are developed which can
handle increasingly difficult light paths. On the other hand pro-
duction rendering and interactive applications still rely on the sim-
pler algorithms like path tracing, because of their lower overhead.

Path space regularization [KD13] helps to find difficult light path
situations in any of the rendering methods. By allowing a bia-
sed result, non-sampleable or high variance paths can be sampled
with a lower variance. While the work of Kaplanyan and Dachsba-

cher [KD13] focused on the otherwise infeasible specular events,
this paper extends the idea to general microfacet models. We dis-
tinguish specular events (deterministic reflections/refractions) and
glossy events (randomly disturbed/rough specular). We summarize
the difficult smooth glossy and specular vertices as shiny in the fol-
lowing. Paths including glossy events are in general sampleable,
but may result in a very high variance. By smoothing the material
evaluation we can reduce this variance. Further, regularization is
able to produce caustics and pure shiny paths in simple rendering
methods like Path Tracing (PT) – at the cost of blurriness – which
would not be found otherwise.

Our approach is to invert the Bidirectional Scattering Distribu-
tion Function (BSDF) of common microfacet models to determine
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a roughness parameter such that the evaluation in any possible di-
rection will result in at most a chosen threshold. This change of pa-
rametrization will be applied whenever a connection (in the sense
of bidirectional path tracing [VG95]) is established. For an already
sufficiently rough surface the regularization will not change the pa-
rameter and thus limit the bias to difficult paths only. Also, we show
how the Multiple Importance Sampling (MIS) weight changes ac-
cording to the replacement of BSDFs. Further, we introduce two
heuristics to fully avoid regularization if possible and to reduce the
visible bias otherwise. Our contributions are:

• Application of path space regularization to microfacet models
• An MIS weight in the presence of regularization
• Two heuristics to reduce the bias adaptively
• Evaluation of two regularization strategies:

roughness parameter (mollification)↔ virtual merge

2. Related Work

The problem of light transport can be described by an integral equa-
tion – the rendering equation [Kaj86]. Monte Carlo methods solve
this equation numerically by stochastic sampling. The first solution,
Path Tracing (PT) by Kajiya [Kaj86], produced paths starting at the
observer only. Due to its simplicity it is widely used in production
rendering [FHF∗17]. However, it is unable to sample any path con-
taining a number of specular events before reaching an infinitesimal
small light source. The same applies to paths with glossy events
and small (non-infinitesimal) light sources which can be found, but
produce an impractical amount of noise.

A possible solution is Manifold Next Event Estimation (MNEE)
[HDF15] where a connection to a light source passing through
shiny surfaces is iteratively perturbed on the surfaces until the cor-
rect path is found or the process is canceled. Regularization, as des-
cribed here, avoids the expensive iterative process.

Other than improving PT there are also more complex rende-
ring techniques involving paths from the observer and the light
source. Bidirectional Path Tracing (BPT) [VG95] does so by crea-
ting any possible connection between a light- and a view-subpath.
Unlike PT it is able to find caustics (a diffuse vertex on the view-
path followed by shiny vertices). On the other hand, BPT still fails
for shiny-diffuse-shiny paths. When allowing a small bias these
paths can be found by merging the end vertices of the two invol-
ved caustic paths, as done by Photon Mapping (PM) [Jen96]. Pho-
ton Mapping can be seen as a regularization in the spatial dom-
ain. Using Progressive Photon Mapping [HOJ08, HJ09] it is possi-
ble to converge to the correct result over time (consistent). Knaus
and Zwicker [KZ11] simplify the implementation of a consistent
photon mapper by applying global convergence statistics. Finally,
VCM [GKDS12,HPJ12] combines PM with BPT and therefore in-
creases the robustness further. Unfortunately, even VCM is unable
to find pure shiny paths and can thus still profit from regularization.

Another family of Monte Carlo integration methods uses Markov
Chains (MCMC) which converge to an unknown density function
by stochastic decisions. The first such rendering method was Me-
tropolis Light Transport [VG97]. Since then a number of impro-
vements were made, including the combination of MLT and VCM
by Šik et al. [ŠOHK16]. More about MCMC in general can be
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Figure 2: Example paths with regularization of a connection (left)
and a merge (right). By smoothing the BSDF ρ into ρ̂, a larger set
of paths has a non-zero contribution.

found in a recent survey from Šik and Křivánek [ŠK18]. Howe-
ver, MLT methods often get stuck in local optima and have similar
difficulties to find shiny paths as the other methods. Regularization
helps those methods in finding the complex paths, which was the
original intention of regularization [KD13].

Bouchard et al. [BIOP13] used the same regularization as Kap-
lanyan and Dachsbacher but introduced a custom MIS weight to
select between unbiased and biased samplers. Our non-adaptive re-
gularization generalizes this for microfacet models while our heu-
ristics reduce the bias further.

We believe that regularization approaches and guided sampling
methods [HEV∗16, MGN17] benefit from each other. The idea of
this methods is to learn the radiance and importance distribution
in the scene to improve the local sampling quality. While regulari-
zation is strong if the found paths are close to the actual solution,
guidance helps to generate these close paths more often.

3. Roughness-based BSDF Regularization

The idea of regularization is to remove difficult-to-sample light
transport paths by softening shiny BSDFs in a mostly energy-
preserving way. This can be achieved by controlling the roughness
parameter α of common microfacet models with a Bidirectional
Scattering Distribution Function (BSDF) ρ(α,�w,�w), where �w is
the incident and �w the exitant direction of evaluation.

Setting a maximum evaluation value τ, we can invert an upper
bound ρ̄(α) ≥ ρ(α,�w,�w) on the BSDF, to obtain a threshold for
the roughness parameter

α̂ = ρ̄
−1(τ). (1)

Then, ρ is evaluated as ρ̂ = ρ(max(α, α̂),�w,�w), which applies re-
gularization only if the model was too shiny before. Rougher sur-
faces keep their appearance (use the original α). For anisotropic
models each of the two roughness parameters can be bounded in-
dependently. While it is be possible to maintain a constant ratio of
the two parameters, this would only introduce unnecessary bias for
the larger of the two parameters.

We apply the modification of the roughness parameter only if
a connection or a merge is evaluated, as shown in Figure 2. Du-
ring the random walk, as shown below, we use the original BSDF
and Probability Density Function (PDF) without modification. This
avoids the introduction of an additional bias where it would not be
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necessary. The samples of the resulting estimator for connection
paths of length ` have the form

ÎC :
k−1

∏
i=0

ρi

pi
· ρ̂k cosθk cosθk+1ρ̂k+1

d2 ·
`

∏
i=k+2

ρi

pi
(2)

ρ0
p0

ρk−1
pk−1 ρ̂k cosθk d

ρ̂k+1 cosθk+1
ρk+2
pk+2

ρ`

p`

and for merge paths:

ÎM :
k−1

∏
i=0

ρi

pi
· ρ̂k

πr2 ·
`

∏
i=k+1

ρi

pi
. (3)

ρ0
p0

ρk−1
pk−1

ρ̂k
πr2

ρk+2
pk+2

ρ`

p`

Thereby, ρi/pi = ρ(αi,
�wi,

�wi)/p(αi,
�wi) are the Monte Carlo

sampling events in the two sub-paths, ρ̂ is the regularized BSDF,
d2 is distance between the two connected vertices and 1/πr2 is the
kernel for the photon merge as used in VCM. For brevity we used
the symbol ρ for BSDFs, camera response and light radiance, allo-
wing to put the first and last term into the products.

All methods like PT, BPT and VCM are described by different
combinations of the above two sampler types with the addition
of the random hit sampler. For example, a PT combines random
hits with connections towards the light sources (k = `−2 in Equa-
tion (2)), also called next event estimation.

3.1. Variance with and without Regularization

Modifying the estimators in the proposed way (Equations (2) and
(3)) limits the relative variance of a sample. Formally, we can exa-
mine the variance of the estimators without V[I] and with regulari-
zation V[Î] to understand the effect of regularization. For indepen-
dent random experiments X and Y we have V [XY ] = E[X ]2V [Y ]+
E[Y ]2V [X ]+V [X ]V [Y ] as the joint variance of the product. This al-
lows us to factorize our estimators into two parts: one containing
all Monte Carlo events ρi/pi and one for the central term.

If ρi ≈ ci · pi for some constant factor ci, which is the case for
most BSDF, camera and light samplers, the variance of all Monte
Carlo events is negligible:

V

[
∏

i

ρi

pi

]
≈ 0 E

[
∏

i

ρi

pi

]
≈∏

i
ci.

An appropriate sampler for microfacet models was introduced by
Heitz and d’Eon [Hd14]. Thus, in most cases the variance in the
rendered images does not originate in this part of the estimator. If
there are weak importance sampling methods for some complex
materials it might be useful to clamp the throughput of each event
via min(cmax,ρi/pi). However, this is not the reason for variance
in difficult paths. Especially for specular events the sampler is a de-
terministic reflection with V = 0 and clamping it would not reduce
the variance of the respective paths.

Hence, the variance of our estimators is dominated by the remai-

ning central terms

V [ÎC]∝V
[

ρ̂k cosθk cosθk+1ρ̂k+1
d2

]
� 0 (4)

and V [ÎM ]∝V
[

ρ̂k
πr2

]
� 0. (5)

The expected value can be computed as the double integral of the
term over the footprints of the sampled paths. Thereby, the footprint
is the distribution of possible endpoints of the respective sub-path.
Then, the variance depends on the size of the footprints as well as
on the variation of the terms over this area. If the two endpoints of
the paths vary, there is also a variation in the angular domain which
causes a high variance if the BSDF ρ has a sharp peak. Using the
smoothed ρ̂ reduces the variance in equations (4) and (5) in this
case. It is not possible to limit the total variance of the path by
only modifying the BSDF. All variance from sampling events, the
cosine term cosθ and the distance d cannot be controlled this way.
However, by keeping those terms we have a contribution-relative
limit rather than an absolute one.

3.2. Regularizing Microfacet Models

In this section, practical estimates of the upper bound ρ̄
−1 (Equa-

tion (1)) are introduced for the two most common models. In ge-
neral the bound must be independent of the incident and exitant
direction. Otherwise, the BSDF would be a different one for each
evaluated pair of directions, leading to an undesired modification
of the shape and energy of the BSDF.

The most used microfacet reflectance model is the Torrance-
Sparrow [TS67] model

ρr(
�w,�w) =

D(h)G(�w,�w)F(〈�w,h〉)
4|〈�w,n〉〈�w,n〉|

(6)

Here, the function D is the microfacet distribution, G the geome-
trical shadowing between microfacets, F the Fresnel reflectance, n
the surface normal and h = (�w+�w)/‖�w+�w‖ the half vector bet-
ween incident �w and exitant direction �w.

Analogous, a microfacet transmittance model was introduced by
Walter et al. [WMLT07]:

ρt(
�w,�w) =

D(ht)G(�w,�w)(1−F(〈�w,ht〉))
(ηi〈�w,ht〉+ηt〈�w,ht〉)2

η2
t |〈

�w,ht〉〈�w,ht〉|
|〈�w,n〉〈�w,n〉|

(7)

where ηi and ηt are the refraction indices on the incident and the
transmitted side of the surface and ht = −(ηi

�w + ηt
�w)/‖ηi

�w +
ηt

�w‖ is the transmission half vector.

For the bound we can set the Fresnel terms F and 1−F to one,
respectively. This maximizes the BSDF in a conservative way.

The microfacet distribution D is usually maximized if �w = �w =
n. It turns out that the maximum for D is the same for the GGX, the
Beckmann and the Cosine distribution, namely 1/πα

2. For details
please refer to the supplemental.

Unfortunately, the denominator |〈�w,n〉〈�w,n〉| in both models
causes a problem. It effectively says that any model, independent
of the roughness, converges to a specular model at grazing angles.
Thus, the strict upper bound is infinity in general, depending on the
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(a) Sample-MIS, σ = 17.66 (b) Reg-MIS, σ = 1.91

Figure 3: MIS weight comparison for 1000spp BPT (τ = 30). The
inset shows a glass sphere with a diffuse icosahedron inside. Using
the sampling-PDFs yields a higher variance σ

2 (a) than the cor-
rected strategy Eq. (13) using modified PDFs (b).

microfacet shadowing G. We discuss bounds for the two most com-
mon shadowing models, V-cavity [TS67] and Smith [Smi67] in the
supplemental. Both (and some more) are described well in Heitz’s
survey on microfacet shadowing [Hei14].

Putting all together we get the bound functions

ρ̄r(α) =
1

4πα2 Ḡ(α) (8)

and ρ̄t(α) =
max(ηi,ηt)

2

πα2(ηi−ηt)2 Ḡ(α) (9)

with Ḡ(α) =


1 V-cavity
4/α

2 Smith, GGX
4π/α

2 Smith, Beckmann or Cosine

where details on the maximization of the remaining term in the
refractive case are shown in the supplemental material.

In general, microfacet models lose energy at high roughness va-
lues due to missing multiple scattering between the facets. Our ap-
proach is energy-preserving, only if this loss is compensated. Ot-
herwise, the bound is conservative and could be reduced according
to the energy loss to minimize the bias.

3.3. MIS Weights under Regularization

Simply replacing the BSDFs in a common method like BPT leads
to a high variance which is shown in Figure 3. The reason is that the
usual MIS-weight computation is invalid for the new estimators.

Consider the multi-sample model

F =
m

∑
i=1

1
ni

ni

∑
j=1

wi(xj)Îi(xj) (10)

where Î are m different sampling strategies as described in Equation
(2) and (3), ni is the number of samples created with these strategies
and xj is the path of a specific sample.

Following the proof in Veach’s thesis [Vea97, p 288] the variance

Ω

r

d

−1 0 1 θh

Original BRDF
ρ(α,�w ,�w)

Regularized BRDF
ρ(α̂,�w ,�w)

ρcone

τ

Figure 4: Left: A cone in which a connection is accepted with a
constant BSDF ρcone = 1/Ω = τ (i.e.

∫
Ω

τ dω = 1). Right: Our pa-
rametrization limiting the maximum BSDF value by τ.

of this estimator is

V [F ] =

(∫
Ω

m

∑
i=1

w2
i (x)
ni

Îi(x)
2 p∗i (x) dµ(x)

)
−

(
m

∑
i=1

1
ni

µ2
i

)
(11)

with p∗i (x) being the sampling probability of the associated esti-
mator Îi which is a product of sampling probabilities p(w) with
respect to the area measure: p∗i (x) = ∏ j pj(

�wj)dAj. On the right,
µi is the true expected value of the estimator including the weight,
i.e. µi = E[wi Îi].

At this point Veach assumed that Îi(x) has the form fi(x)/p∗i (x)
and that fi† is constant per path: fi(x) = f j(x), which allowed him
to remove fi from the weight optimization. This is not true for our
regularization strategy. Due to regularizing a different ρ in each of
the strategies, fi is not constant anymore. It differs for each of the
sampling strategies.

Applying the same approach of optimizing the first term in Equa-
tion (11) using Lagrange multipliers, we get a different form of the
balance heuristic

wi =
ni(1/Îi)

∑k nk(1/Îk)
=

ni

∑k nk(Îi/Îk)
. (12)

In the case that no regularization is used, Equation (12) falls back to
the known form ni p∗i /∑k nk p∗k , as was shown by Jendersie [Jen18].
Similar, we can cancel out terms to express Equation (12) with re-
spect to regularized PDFs p̂∗ = ∏ j p̂j dA:

wi =
ni p̂∗i

∑k nk p̂∗k
. (13)

We set p̂j = (ρ̂j/ρj) · pj in each event j on the path, such that the
difference between regularization and no regularization becomes
part of the PDF. Note that we still sample the non-regularized PDFs
pj. This is only an artificial change to simplify the implementation
of the MIS, if integrated into a common renderer.

We show in the supplemental that p̂j can be obtained directly by
evaluating the PDF with the parameter α̂, instead of computing the
ratio of BSDFs (ρ̂j/ρj). For the Smith model, an additional quo-
tient of geometry terms Gα̂(

�w)/Gα(
�w) must be added, which is

not necessary for the V-cavity model.
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(a) PT, 16k spp (b) PT, τ = 10, 16k spp (c) PT, τ = 100, 24k spp (d) PT, τ0 = 100, 32k spp (e) VCM, 32k spp

Figure 5: Bias comparison of a non consistent, regularized PT (b, c) with a consistent one (d) and a reference rendering (e). The scene shows
the PBRT-dragon (courtesy of Christian Schüller) inside an amber, illuminated by a point light source.

3.4. A Consistent Parametrization

Commonly, a start radius r0 is used in photon mapping to define
the amount of allowed spatial bias. All photons within a disc of
the specified radius around the search location are merged with the
current sub-path. To produce consistent results, the radius r is often
reduced progressively over iterations [HOJ08,HJ09,KZ11,KD13].

As shown in Kaplanyan and Dachsbacher’s work [KD13], the
optimal radius in iteration N for a regularization with two degrees
of freedom, like photon mapping, is

rN = r0 ·N−
1/6. (14)

They applied this parametrization to mollify specular vertices by
computing a cone opening angle from rN and the distance d (Figure
4 left). Then, if a connection is found within this cone, it is accepted
and the uniform BSDF of a cone-shaped distribution

ρcone =
1

2π(1− cos(arctan(rN/d)))
(15)

is evaluated. We define that the threshold τ should equal ρcone (Fi-
gure 4 right), because the radius cannot be applied directly to arbi-
trary BSDFs. A normalized BSDF with the same maximum value
will have a similar width and variance like ρcone.

However, we found that the segment length d causes problems
for several reasons: First, the BSDF loses its reciprocity and se-
cond, while evaluating different directions, the smoothness of the
BSDF would change, leading to arbitrary shapes. To become inde-
pendent of d we inverted Equation (15) for rN and reinserted it (for
details please refer to the supplemental) which leads to

τN =
1

2π

[
1− cos

(
arctan

(√
4πτ0−1

2πτ0−1 ·N−
1/6
))] (16)

as a consistent threshold for iteration N. Since we still apply the
decreasing series to a radius we can rely on the proofs made previ-
ously [KD13].

† f is the path measurement contribution function

shiny
shiny

d0 d1
d2 d3

d4

dpath = ∑i di

Figure 6: Example of a sampleable, high variance path which can
be avoided by regularizing other connections.

3.5. Adaptive Regularization

In Figure 5 we can see examples of a regularized path tracer with
and without consistent parametrization. While image (d) converges
to the reference (e) in theory, it will not do so for any practical
iteration count. However, we can restrict the bias to difficult paths
only, instead of using an unconditional regularization. For example,
the highlights could be rendered with a much larger τ.

We introduce two heuristics to reduce the bias: the sampler qua-
lity and path diffusion. If there is a sampler which can sample the
current path well, we want to disable regularization for this path.
Otherwise, we would like to hide the bias by increasing the thres-
hold dependent on the path diffusion. If the path was scattered on a
rough surface, it is likely that we are not able to see the bias intro-
duced by the blurring of highlights. On the other hand, bias is well
visible if the path is almost deterministic – in which case the vari-
ance will be small and we can reduce the amount of regularization.

3.5.1. Sampler Quality

Our first heuristic estimates an upper bound q of the smallest pos-
sible connection term on the path:

q = min
k

(
ρ̄k · ρ̄k+1 · (dk/dpath)

−2
)
. (17)

According to the assumption of low variance samplers ρ/p in
Section 3.1, the connection term dominates the path’s variance.
Therefore, q < τ

2 implies a sufficient sampler but does not gua-
rantee one.

We added the relative connection length dk/dpath, with dpath
being the sum of all segment lengths, to judge the influence of d
in Equation (4). An absolute small distance on an equally short
path means a high contribution without much variance. Contrary, a
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(a) No regularization (b) Non-adaptive (c) Sampler Quality (Eq. (18)) (d) Diffusion (Eq. (19)) (e) Both

Figure 7: BPT with different strategies of adaptive regularization (τ0 = 30, 16k spp). The sampler quality heuristic (c) preserves the caustic,
but keeps blurred specular paths. The diffusion heuristic (d) results in sharper highlights and sharper directly visible refractions, but blurs
the caustic even more. In (e) both are combined and the overall bias is reduced. Also compare with the ground truth VCM from Figure 5.

glossy

ϕ

θ

g(θ,ϕ) =
1

2πσ2
^

exp

(
− tan2

θ

2σ2
^

)

g(0,0) =
1

2πσ2
^

= ρ̄

Figure 8: Tangential standard deviation of the reflection direction
through the BSDF.

surface

1r

H ·σx =
σx

rσx

Figure 9: Curvature equals the inverse radius of a sphere. Multi-
plying with the spatial footprint yields a tangens-deviation again.

small distance on a long path may lead to a high variance sampler.
An example is shown in Figure 6 and can be observed in practice
in Figure 7 (a) on the dragon’s wings.

If q < τ
2, at least one unbiased sampler is expected to be as good

as any regularized sampler we could get, so we set

τ
′ =

{
τ if q≥ τ

2

∞ otherwise
(18)

to disable regularization in the presence of a good sampler. Compa-
ring Figure 7 (b) with (c), we can see that the caustic is successfully
preserved without introducing noise in other regions.

The heuristic has an inevitable discontinuity, if the best sampler’s
q is approximating τ

2. In the moment of crossing the threshold, re-
gularization will be switched off which can happen due to a change
of τ or a change in path length (e.g. animation). A smoother transi-
tion from∞ to τ is possible by exchanging Equation (18).

3.5.2. Path Diffusion

The motivation for the second heuristic is that we would like to
hide the bias in regions of the paths where we cannot see it directly

and to reduce the blurring of shiny paths. For example, in Figure 3
(b, closeup) the shiny-diffuse-shiny paths look very cloudy. By re-
gularizing only the second shiny surface (towards the light) we can
avoid the visible blur on the first surface. To that end, we modify τ

by the tangential standard deviation σ^ on the view sub-path up to
the current vertex k:

τ
′ =

τ

σ^,k
(19)

We determine σ^,k similar to the 5D covariance tracing from
Belcour et al. [BSS∗13], but reduce the estimate to 2D. We are
neither interested in anisotropic shapes nor in a temporal domain.
The computation for our simplified case can be summarized by:

σx,k = σx,k−1 +σ^,k−1 ·d (20)

σ^,k = σ^,k−1 +(2πρ̄k−1)
−1/2 +σx,k−1 ·Hk−1 (21)

where σx describes the positional standard deviation (footprint) and
H is the mean curvature of the local surface. The term (2πρ̄)−1/2

accounts for the BSDF-based diffusion as follows: If we assume
a bivariate Gaussian distribution in the tangential plane to the re-
flection direction (Figure 8), we can set its maximum g(0,0) to ρ̄.
This equality can be solved for the standard deviation parameter
which gives us the above term.

The curvature H accounts for the macroscopic scattering which
needs to be converted into an absolute diffusion by using the ex-
pected footprint size σx. The geometrical interpretation for the cur-
vature diffusion is shown in Figure 9.

3.6. Alternative Regularization Strategies

For the regularization of pure specular events, the cone-BSDF can
be used with either the radius or our parametrization to match the
regularization of the microfacet BSDFs [KD13].

Kaplanyan and Dachsbacher also proposed to simulate a merge
by accepting a connection if a random sample is within a cone. The
virtual merge algorithm is as follows:

1. Sample the current BSDF→ sample with ρs, ps,ws
2. Compare angle between ws and the connection direction

a. If within allowed cone return τ · fs/ps
b. Otherwise discard connection
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(a) Non-adaptive, τN = 30
σ = 1.91

(b) Virtual merge, τN = 30
σ = 2.66

Figure 10: Virtual merge strategy compared to the roughness-
based approach. Both images are rendered with BPT (1000 spp).

This approach has two drawbacks. First, the additional random
sampling introduces variance on its own and also consumes pre-
cious random numbers, and second, it is difficult to adopt the MIS
weight computation.

One possible MIS strategy would be to replace the PDF of the
regularized vertex with τ (see supplemental). The reasoning be-
hind this simple solution is that the difference between a random
walk and a random connection is the chance 1/τ to accept the con-
nection. Both include the sampling probability ps, such that it can-
cels out. Note that this is not an optimal choice, because the true
chance 1/

∫
p over the cone would be required instead.

We tested this regularization strategy, as shown in Figure 10.
While providing sharper versions of the highlights, it also shows
a higher noise level than the mollification approach. As expected,
the additional random sampling produces a high variance in the tail
regions of the regularized vertices.

4. Results

Our goal was to reduce the variance of arbitrary Monte Carlo light
transport algorithms by blurring paths which are hard to sample.
In Figure 11 we show an equal time comparison with and wit-
hout regularization, starting at a very small threshold. In all cases,
both heuristics are enabled by applying Equations (18) and (19)
successively. To measure the error we used the sample standard
deviation σ and the root mean square error of relative residuals

RMSRE =
√

1
n ∑i(ai−bi)2/( ai+bi

2 )2. Using absolute RMSE pe-
nalizes bright noise much more than missing features and turned
out to be unusable. For example in the TOY DRAGONS scene, the
PT and the VCM rendering have almost the same RMSE.

In many cases regularization is able to produce more difficult
light effects in the simpler rendering methods PT and BPT. There,
caustics or SDS paths are missing if rendered without regulariza-
tion. In some cases (e.g. TOY DRAGONS: reflected caustics) our PT
does a better job than BPT, because it connects to all light sources
instead of a single light path like BPT, thus lowering the overall
variance. If regularization is applied to VCM, the shiny paths are
added and additional samples for SDS paths are provided. This im-
proves the fidelity of shiny objects like jewels or the glass dragon.

The noise level σ is often higher in the regularized variants, be-
cause the otherwise missing light effects add a considerable amount
of new noise sources. Visually, the overall error is still smaller due
to the reduced bias (also see SSIM convergence experiment in the
supplemental). Comparing the three regularized variants to each
other we can see that using the more expensive method produces
less variance in general. The reason is that regularization only turns
an impossible path into an unlikely one, whereas adding more sam-
plers can produce the same path with a higher probability.

4.1. Parameter Choice

In general τ can be chosen independent of the scene, but fine tu-
ning can improve the balance between noise and variance. For PT
and BPT the threshold τ0 should be in [10,100] for reasonable noise
levels of caustics/SDS paths. Also see Figure 5 (b, c) for a compari-
son of different parameters. Higher thresholds are possible for pure
shiny paths without problems. Therefore, setting τ0 ∈ [1000,5000]
in VCM is reasonable as well. However, using smaller thresholds in
VCM also helps to decrease variance (e.g. Figure 11, MARBLES).

5. Conclusions and Future Work

We have shown how the regularization framework from Kaplanyan
and Dachsbacher [KD13] can be applied to more general microfa-
cet BSDF models. It turns out that the mollification, i.e. the blur-
ring of the BSDFs, yields better results with respect to variance and
visual appearance than using virtual merges. In both cases it is ne-
cessary to change the MIS weight computation for which we have
found an appropriate strategy.

With general regularization it is possible to render complex sce-
nes (with respect to paths) with simpler methods. Additionally, va-
riance can be reduced in methods like VCM. Regularization will
not produce the unbiased ground truth in a practical amount of
time, if the underlying algorithm cannot handle the light effects.
Its main advantage is to decrease the variance at the cost of bias,
while producing results which are more similar to the ground truth
than without regularization.

We would prefer VCM over regularized BPT in this raw confi-
guration, because its path reuse decreases the variance considera-
bly. However, this might be different for renderers employing ca-
ching and guidance strategies which are likely to reduce variance
in regularized SDS configurations. For example using a sampling
guidance method [HEV∗16, MGN17] would help in SDS paths, to
proceed into the direction of the next highlight.

A different application could be the use in improved BPT met-
hods. Popov et al. proposed to resample a connection attempt from
a set of possible connections with respect to the expected contri-
bution [PRDD15]. Similarly, Chaitanya et al.’s Matrix Bidirectio-
nal Path Tracing [CBH∗18] reshuffles a set of connections to mini-
mize the connection distances of the set, which again increases the
expected contribution. Both strategies are capable of reducing the
variance in BPT and could do well in cases of regularized paths.
Especially, Popov’s method [PRDD15], which includes the BSDF
values, could select appropriate light path vertices on a smooth sur-
face for regularized connections.
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NECKLACE MARBLES TOY DRAGONS

PT

763 spp, σ = 2.46, RMSRE = 0.62 970 spp, σ = 0.64 RMSRE = 0.78 1015 spp, σ = 0.13 RMSRE = 0.87

PT
+

re
gu

la
ri

za
tio

n

746 spp, σ = 3.95, RMSRE = 0.46 941 spp, σ = 2.74 RMSRE = 0.40 1008 spp, σ = 1.20 RMSRE = 0.28

B
PT

842 spp, σ = 4.07, RMSRE = 0.56 647 spp, σ = 1.00 RMSRE = 0.54 541 spp, σ = 0.56 RMSRE = 0.72

B
PT

+
re

gu
la

ri
za

tio
n

813 spp, σ = 4.31, RMSRE = 0.47 625 spp, σ = 2.55 RMSRE = 0.36 523 spp, σ = 1.37 RMSRE = 0.31

V
C

M

747 spp, σ = 4.95, RMSRE = 0.52 432 spp, σ = 0.95 RMSRE = 0.24 487 spp, σ = 1.03 RMSRE = 0.29

V
C

M
+

re
gu

la
ri

za
tio

n

717 spp, σ = 5.04, RMSRE = 0.41 433 spp, σ = 1.59 RMSRE = 0.27 493 spp, σ = 1.18 RMSRE = 0.23

Figure 11: Equal-time comparison over 1h process time. All regularized images are rendered with the roughness-based, adaptive, consistent
approach (τ0 = 10).
NECKLACE: A metal necklace with several crystals on a slightly rough golden floor; 10 point lights (7 inside the crystals) and 1 area light.
MARBLES: Glass, metal spheres and gems on a rough blue folded cloth; 6 point lights (3 colored inside the wobbly spheres), env.-map.
TOY DRAGONS: Two dragons in front of a mirror, one inside a thin glass hull; 2 point lights.
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To decrease the regularization bias, it would be nice to have clo-
sed form convolutions for the analytic BSDF models. The current
approach redistributes the energy of a glossy peak along all angles
– including the tails. An analytic convolution would have similar
results as the virtual merge approach, but without the additional
random decision. An approximate solution to this problem was gi-
ven by Heitz et al. [HDHN16] using cosine lobes.
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